[Sur les -modèles injectifs non connexess]
Si est un groupe fini, L.S. Scull a observé que la définition originale de la minimalité équivariante n’est pas correcte dans le cas -connexe par suite d’une erreur concernant des propriétés algébriques. Dans le cas -non connexe la catégorie des orbites a été remplacée par la catégorie , avec un objet pour chaque composante des sous-ensembles simpliciaux de points fixes d’un ensemble -simplicial , pour tous les sous-groupes . Nous redéfinissons la minimalité équivariante et nous redéveloppons des résultats d’homotopie rationnelle pour les ensembles -simpliciaux non connexes. Pour montrer l’existence d’un modèle minimal injectif pour un ensemble -simplicial non connexe, nous remplaçons par la catégorie plus subtile avec un objet pour chaque 0-simplexe de sous-ensembles simpliciaux de points fixes , par tous les sous- groupes .
Let be a finite group. It was observed by L.S. Scull that the original definition of the equivariant minimality in the -connected case is incorrect because of an error concerning algebraic properties. In the -disconnected case the orbit category was originally replaced by the category with one object for each component of each fixed point simplicial subsets of a -simplicial set , for all subgroups . We redefine the equivariant minimality and redevelop some results on the rational homotopy theory of disconnected -simplicial sets. To show an existence of the injective minimal model for a disconnected -simplicial set we replace by the more subtle category with one object for each 0-simplex of fixed point simplicial subsets , for all subgroups .
Keywords: differential graded algebra, de Rham algebra, $EI$-category, $i$-elementary extension, $i$-minimal model, linearly compact (complete) $k$-module, Postnikov tower, quasi-isomorphism, rationalization, $G$-simplicial set
Mot clés : algèbre gradué différentiel, algèbre de de Rham, $EI$-catégorie, $i$-extension élémentaire, $i$-modèle minimal, $k$-modèle compact linéairement, tour de Postnikov, quasi-isomorphisme, rationalisation, ensemble simpliciel $G$
Golasiński, Marek 1
@article{AIF_2003__53_2_625_0, author = {Golasi\'nski, Marek}, title = {On $G$-disconnected injective models}, journal = {Annales de l'Institut Fourier}, pages = {625--664}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1954}, zbl = {01940706}, mrnumber = {1990008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1954/} }
TY - JOUR AU - Golasiński, Marek TI - On $G$-disconnected injective models JO - Annales de l'Institut Fourier PY - 2003 SP - 625 EP - 664 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1954/ DO - 10.5802/aif.1954 LA - en ID - AIF_2003__53_2_625_0 ER -
%0 Journal Article %A Golasiński, Marek %T On $G$-disconnected injective models %J Annales de l'Institut Fourier %D 2003 %P 625-664 %V 53 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1954/ %R 10.5802/aif.1954 %G en %F AIF_2003__53_2_625_0
Golasiński, Marek. On $G$-disconnected injective models. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 625-664. doi : 10.5802/aif.1954. https://aif.centre-mersenne.org/articles/10.5802/aif.1954/
[1] On PL de Rham theory and rational homotopy type, Memories of the Amer. Math. Soc., Volume 179 (1976) | MR | Zbl
[2] Equivariant Cohomology Theories, Lecture Notes in Math, Volume vol. 34 (1967) | MR | Zbl
[3] Homotopy coherent category theory, Trans. Amer. Math. Soc., Volume 349 (1997) no. 1, pp. 1-54 | DOI | MR | Zbl
[4] Real homotopy theory of Kähler manifolds, Invent. Math., Volume vol. 29 (1975), pp. 245-274 | DOI | EuDML | MR | Zbl
[5] Disconnected equivariant rational homotopy theory and formality of compact G-Kähler manifolds (1992) (Ph.D. thesis, Chicago)
[6] On the equivariant formality of Kähler manifolds with finite group action, Can. J. Math., Volume 45 (1993), pp. 1200-1210 | DOI | MR | Zbl
[7] Injective models of G-disconnected simplicial sets, Ann. Inst. Fourier, Grenoble, Volume 47 (1997) no. 5, pp. 1491-1522 | DOI | EuDML | Numdam | MR | Zbl
[8] Injectivity of functors to modules and , Comm. Algebra, Volume 27 (1999), pp. 4027-4038 | DOI | MR | Zbl
[9] On the object-wise tensor product of functors to modules, Theory Appl. Categ., Volume 7 (2000) no. 1, pp. 227-235 | EuDML | MR | Zbl
[10] Component-wise injective models of functors to , Colloq. Math., Volume 73 (1997), pp. 83-92 | MR | Zbl
[11] Lectures on minimal models, Mémories S.M.F., Nouvelle série (1983), pp. 9-10 | Numdam | Zbl
[12] Localization of Nilpotent Groups and Spaces, Noth-Holland Mathematics Studies, 15, Amsterdam, 1975 | MR | Zbl
[13] Algebraic Topology, Amer. Math. Soc. Colloq. Publ., Volume XXVII (1942) | Zbl
[14] Théorie homotopique des formes différentielles, Astérique, 45, S.M.F., 1977 | Zbl
[15] Transformation groups and Algebraic K-Theory, Lect. Notes in Math., 1408, Springer-Verlag, 1989 | MR | Zbl
[16] Simplicial Objects in Algebraic Topology, Van Nostrand Mathematical Studies, 11, Princeton-Toronto-London-Melbourne, 1967 | MR | Zbl
[17] Rational -equivariant homotopy theory, Trans. Amer. Math. Soc., Volume 354 (2002), pp. 1-45 | DOI | MR | Zbl
[18] Infinitesimal Computations in Topology, Publ. Math. I.H.E.S., Volume 47 (1977), pp. 269-331 | Numdam | MR | Zbl
[19] Equivariant minimal models, Trans. Amer. Math. Soc., Volume 274 (1982), pp. 509-532 | DOI | MR | Zbl
[20] An algebraic model for G-homotopy types, Astérisque, Volume 113-114 (1984), pp. 312-337 | MR | Zbl
Cité par Sources :