Nous généralisons les résultats de G.V. Triantafillou et B. Fine sur les ensembles simpliciaux -non connexes. On présente l’existence d’un modèle injectif minimal pour une -algèbre complète, où est une -catégorie. Ensuite, nous utilisons la -catégorie associée à un -ensemble simplicial , pour appliquer ces résultats à la catégorie des -ensembles simpliciaux.
Enfin, nous décrivons le -type d’homotopie rationnelle d’un -ensemble simplicial nilpotent en utilisant leur modèle injectif minimal
We generalize the results by G.V. Triantafillou and B. Fine on -disconnected simplicial sets. An existence of an injective minimal model for a complete -algebra is presented, for any -category . We then make use of the -category associated with a -simplicial set to apply these results to the category of -simplicial sets.
Finally, we describe the rational homotopy type of a nilpotent -simplicial set by means of its injective minimal model.
@article{AIF_1997__47_5_1491_0, author = {Golasi\'nski, Marek}, title = {Injective models of $G$-disconnected simplicial sets}, journal = {Annales de l'Institut Fourier}, pages = {1491--1522}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {5}, year = {1997}, doi = {10.5802/aif.1607}, zbl = {0886.55012}, mrnumber = {99b:55020}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1607/} }
TY - JOUR AU - Golasiński, Marek TI - Injective models of $G$-disconnected simplicial sets JO - Annales de l'Institut Fourier PY - 1997 SP - 1491 EP - 1522 VL - 47 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1607/ DO - 10.5802/aif.1607 LA - en ID - AIF_1997__47_5_1491_0 ER -
%0 Journal Article %A Golasiński, Marek %T Injective models of $G$-disconnected simplicial sets %J Annales de l'Institut Fourier %D 1997 %P 1491-1522 %V 47 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1607/ %R 10.5802/aif.1607 %G en %F AIF_1997__47_5_1491_0
Golasiński, Marek. Injective models of $G$-disconnected simplicial sets. Annales de l'Institut Fourier, Tome 47 (1997) no. 5, pp. 1491-1522. doi : 10.5802/aif.1607. https://aif.centre-mersenne.org/articles/10.5802/aif.1607/
[1] On PL de Rham theory and rational homotopy type, Memories Amer. Math. Soc., 179 (1976). | MR | Zbl
and ,[2] Equivariant Cohomology Theories, Lecture Notes in Math., Springer-Verlag, 34 (1967). | MR | Zbl
,[3] System of fixed point sets, Trans. Amer. Math. Soc., 277 (1983), 275-284. | MR | Zbl
,[4] Disconnected equivariant rational homotopy theory and formality of compact G-Kähler manifolds, Ph. D. thesis, Chicago 1992.
,[5] On the equivariant formality of Kähler manifolds with finite group action, Can. J. Math., 45 (1993), 1200-1210. | MR | Zbl
and ,[6] Injectivity of the de Rham algebra on G-disconnected simplicial sets, (submitted).
,[7] Equivariant Rational Homotopy Theory as a Closed Model Category, J. Pure Appl. Alg., (to appear). | Zbl
,[8] Componentwise injective models of functors to DGAs, Colloq. Math., 73 (1997), 83-92. | MR | Zbl
,[9] Lectures on minimal models, Mémories S.M.F., nouvelle série, 9-10 (1983). | Numdam | MR | Zbl
,[10] Algebraic topology, Amer. Math. Soc. Colloq. Publ., XXVII (1942). | MR | Zbl
,[11] Transformation groups and Algebraic K-Theory, Lect. Notes in Math., Springer-Verlag, 1408 (1989). | MR | Zbl
,[12] Infinitesimal Computations in Topology, Publ. Math. I.H.E.S., 47 (1977), 269-331. | Numdam | MR | Zbl
,[13] Equivariant minimal models, Trans. Amer. Math. Soc., 274 (1982), 509-532. | MR | Zbl
,[14] Ratinalization of Hopf G-spaces, Math. Z., 182 (1983), 485-500. | MR | Zbl
,[15] An algebraic model for G-homotopy types, Astérisque, 113-114 (1984), 312-337. | MR | Zbl
,Cité par Sources :