[Le petit lieu de Schottky-Jung en caractéristiques positives différentes de deux]
Nous prouvons que le lieu des jacobiens est une composante irréductible du petit lieu de Schottky en caractéristique différente de . La preuve repose sur une méthode introduite par B. van Geemen en caractéristique et se base sur une analyse détaillée au bord du -développement des relations de Schottky-Jung. Nous obtenons ces relations d’une façon algébrique en utilisant les fonctions thêta -adiques définies par Mumford. La théorie d’uniformisation des schémas semi-abéliens, due à D. Mumford, C.-L. Chai et G. Faltings, permet d’ étudier des -développements en dimension supérieure en donnant une preuve plus simple.
We prove that the locus of Jacobians is an irreducible component of the small Schottky locus in any characteristic different from . The proof follows an idea of B. van Geemen in characteristic and relies on a detailed analysis at the boundary of the - expansion of the Schottky-Jung relations. We obtain algebraically such relations using Mumford’s theory of -adic theta functions. We show how the uniformization theory of semiabelian schemes, as developed by D. Mumford, C.-L. Chai and G. Faltings, allows the study of higher dimensional -expansions simplifying the argument.
Keywords: Schottky-Jung relations, theta functions, Mumford's uniformization
Mot clés : relations de Schottky-Jung, fonctions theta, uniformisation à la Mumford
Andreatta, Fabrizio 1
@article{AIF_2003__53_1_69_0, author = {Andreatta, Fabrizio}, title = {The small {Schottky-Jung} locus in positive characteristics different from two}, journal = {Annales de l'Institut Fourier}, pages = {69--106}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {1}, year = {2003}, doi = {10.5802/aif.1940}, zbl = {1067.14025}, mrnumber = {1973069}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1940/} }
TY - JOUR AU - Andreatta, Fabrizio TI - The small Schottky-Jung locus in positive characteristics different from two JO - Annales de l'Institut Fourier PY - 2003 SP - 69 EP - 106 VL - 53 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1940/ DO - 10.5802/aif.1940 LA - en ID - AIF_2003__53_1_69_0 ER -
%0 Journal Article %A Andreatta, Fabrizio %T The small Schottky-Jung locus in positive characteristics different from two %J Annales de l'Institut Fourier %D 2003 %P 69-106 %V 53 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1940/ %R 10.5802/aif.1940 %G en %F AIF_2003__53_1_69_0
Andreatta, Fabrizio. The small Schottky-Jung locus in positive characteristics different from two. Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 69-106. doi : 10.5802/aif.1940. https://aif.centre-mersenne.org/articles/10.5802/aif.1940/
[An] On Mumford's uniformization and Néron models of Jacobians of semistable curves over complete bases, Moduli of Abelian Varieties (Progress in Math), Volume 195 (2001), pp. 11-127 | Zbl
[Be] Prym varieties and the Schottky problem, Invent. Math, Volume 41 (1977), pp. 149-196 | DOI | MR | Zbl
[BLR] Néron Models, Ergebnisse der Mathematik und ihrer Grenzebiete, 3 Folge, Band 21, Springer-Verlag, 1990 | MR | Zbl
[Br] Fonctions thêta et théorème du cube, Lecture Notes in Math, 980, Springer-Verlag, 1983 | MR | Zbl
[Ch] Compactification of Siegel moduli schemes, London Math. Soc. Lecture Notes Series, Volume 107 (1985) | MR | Zbl
[Do1] Big Schottky, Invent. Math, Volume 89 (1987), pp. 569-599 | DOI | MR | Zbl
[Do2] The Schottky problem, Theory of Moduli (Lecture Notes in Math), Volume 1337 (1988), pp. 84-137 | Zbl
[FC] Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band 22, Springer-Verlag, 1990 | MR | Zbl
[MB] Pinceaux de variétés abéliennes, Astérisque, Volume 129 (1985) | MR | Zbl
[Mu1] On the equations defining abelian varieties 1, 2, 3, Invent. Math, Volume 1 ; 3 (1966 ; 1967), p. 287-358 ; 71--135 ; 215--244 | DOI | MR | Zbl
[Mu2] The structure of the moduli spaces of curves and abelian varieties, Actes Congrès Intern. Math., Volume Tome 1 (1970), pp. 457-465 | Zbl
[Mu3] An analytic construction of degenerating abelian varieties over complete rings, Comp. Math, Volume 24 (1972), pp. 239-272 | Numdam | MR | Zbl
[Mu4] Prym varieties 1, Contributions to analysis (1974), pp. 325-350 | Zbl
[vG] Siegel modular forms vanishing on the moduli space of curves, Invent. Math, Volume 78 (1984), pp. 329-349 | DOI | MR | Zbl
[vS] The Schottky-Jung theorem for Mumford curves, Ann. Inst. Fourier (Grenoble), Volume 39 (1989) no. 1, pp. 1-15 | DOI | Numdam | MR | Zbl
[We1] The surface in Jacobi varieties and second order theta functions, Acta Math, Volume 157 (1986), pp. 1-22 | DOI | MR | Zbl
[We2] Polarized abelian varieties and the heat equations, Comp. Math, Volume 49 (1983), pp. 173-194 | Numdam | MR | Zbl
Cité par Sources :