We give a lower bound for a linear form in elliptic logarithms of algebraic points on an elliptic curve with complex multiplication and which is defined over . The dependence of this bound on the height of this linear form is optimal up to constant.
Nous obtenons une minoration d’une forme linéaire de logarithmes elliptiques de points algébriques d’une courbe elliptique à multiplication complexe définie sur . Cette minoration est optimale (à constante près) en la hauteur de la forme linéaire considérée.
@article{AIF_2000__50_1_1_0, author = {Ably, Mohammed}, title = {Formes lin\'eaires de logarithmes de points alg\'ebriques sur une courbe elliptique de type $CM$}, journal = {Annales de l'Institut Fourier}, pages = {1--33}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {1}, year = {2000}, doi = {10.5802/aif.1745}, zbl = {0957.11030}, mrnumber = {2001g:11119}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1745/} }
TY - JOUR AU - Ably, Mohammed TI - Formes linéaires de logarithmes de points algébriques sur une courbe elliptique de type $CM$ JO - Annales de l'Institut Fourier PY - 2000 SP - 1 EP - 33 VL - 50 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1745/ DO - 10.5802/aif.1745 LA - fr ID - AIF_2000__50_1_1_0 ER -
%0 Journal Article %A Ably, Mohammed %T Formes linéaires de logarithmes de points algébriques sur une courbe elliptique de type $CM$ %J Annales de l'Institut Fourier %D 2000 %P 1-33 %V 50 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1745/ %R 10.5802/aif.1745 %G fr %F AIF_2000__50_1_1_0
Ably, Mohammed. Formes linéaires de logarithmes de points algébriques sur une courbe elliptique de type $CM$. Annales de l'Institut Fourier, Volume 50 (2000) no. 1, pp. 1-33. doi : 10.5802/aif.1745. https://aif.centre-mersenne.org/articles/10.5802/aif.1745/
[AM] Polynômes de Lagrange sur les entiers d'un corps quadratique imaginaire, Journal de théorie des Nombres de Bordeaux, 10 (1) (1998), 85-105. | Numdam | MR | Zbl
et ,[B] Linear forms in the logarithms of algebraic numbers I, II, III, IV, Mathematika, 13 (1966), 204-216, 14 (1967), 102-107, 220-228, 15 (1968), 204-216. | Zbl
,[BWü] Logarithmic forms and groups varieties, J. reine & ang. Math., 442 (1993), 19-62. | MR | Zbl
and ,[CL] Diophantine approximation on abelian varieties with CM, Inventiones Mathematicae, 34 (1976), 129-133. | MR | Zbl
and ,[Da] Minorations de formes linéaires de logarithmes elliptiques, Mémoires de la S. M. F., 62, 143 p., supplément au Bull. S. M. F., 123 (3) (1995). | Numdam | MR | Zbl
,[Di] Minorations de combinaisons linéaires non homogènes pour un logarithme elliptique, C. R. Acad. Sci. Paris, 318, Série I (1994), 879-883. | MR | Zbl
,[H] Algebraic geometry, Graduate texts in Mathematics, 52, Springer-Verlag (1977). | MR | Zbl
,[Hi] Formes linéaires de logarithmes de points algébriques sur les groupes algébriques, Inv. Math., 104 (2) (1991), 401-433. | MR | Zbl
,[M1] Elliptic functions and transcendence, Springer Lectures Notes, 437 (1975). | MR | Zbl
,[M2] Polynomial interpolation in several variables, J. Approximation Theory, 24 (1978), 18-34. | MR | Zbl
,[P] Lemmes de zéros dans les groupes algébriques commutatifs, Bull. S. M. F., 114 (1986), 355-383. | Numdam | MR | Zbl
,[PW1] Formes linéaires de logarithmes elliptiques et mesures de transcendance, 798-805, théorie des nombres. J. -M. De Koninck & C. Levesque (éd. Walter de Gruyter, Berlin, New York (1989). | MR | Zbl
et ,[PW2] Formes linéaires de logarithmes dans les groupes algébriques commutatifs, Illinois Jour. of Math., t. 32 (2), 281-314. | MR | Zbl
et ,[W1] Nombres transcendants et groupes algébriques, Astérisque (1979), 69-70. | MR | Zbl
,[W2] Transcendence measures for exponentials and logarithms, J. Austr. Math. Soc., Ser. A 25 (1978), 445-465. | MR | Zbl
,[Wü] Recent progress in transcendence theory, dans Number Theory, Proceedings Noordwijkerhout 1983, édité par H. Jager, Springer Lecture Notes in Math., V. 1068 (1984), 280-296. | Zbl
,Cited by Sources: