Let be a metric space, equipped with a Borel measure satisfying suitable compatibility conditions. An amalgam is a space which looks locally like but globally like . We consider the case where the measure of the ball with centre and radius behaves like a polynomial in , and consider the mapping properties between amalgams of kernel operators where the kernel behaves like when and like when . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems for Laplace–Beltrami operators on Riemannian manifolds and for certain subelliptic operators on Lie groups of polynomial growth.
Soit un espace métrique, muni d’une mesure borélienne telle que la mesure de la boule de centre et de rayon soit polynomiale en . Un amalgame est un espace de fonctions qui ressemble localement à et globalement à . On étudie les applications linéaires entre amalgames dont les noyaux se comportent comme quand et comme quand . On démontre un théorème de régularité du type Hardy–Littlewood–Sobolev pour l’opérateur de Laplace–Beltrami sur certaines variétés riemanniennes et pour certains opérateurs sous-elliptiques sur les groupes de Lie à croissance polynomiale.
@article{AIF_1999__49_4_1345_0, author = {Cowling, Michael and Meda, Stefano and Pasquale, Roberta}, title = {Riesz potentials and amalgams}, journal = {Annales de l'Institut Fourier}, pages = {1345--1367}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {4}, year = {1999}, doi = {10.5802/aif.1720}, zbl = {0938.47027}, mrnumber = {2000i:47058}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1720/} }
TY - JOUR AU - Cowling, Michael AU - Meda, Stefano AU - Pasquale, Roberta TI - Riesz potentials and amalgams JO - Annales de l'Institut Fourier PY - 1999 SP - 1345 EP - 1367 VL - 49 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1720/ DO - 10.5802/aif.1720 LA - en ID - AIF_1999__49_4_1345_0 ER -
%0 Journal Article %A Cowling, Michael %A Meda, Stefano %A Pasquale, Roberta %T Riesz potentials and amalgams %J Annales de l'Institut Fourier %D 1999 %P 1345-1367 %V 49 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1720/ %R 10.5802/aif.1720 %G en %F AIF_1999__49_4_1345_0
Cowling, Michael; Meda, Stefano; Pasquale, Roberta. Riesz potentials and amalgams. Annales de l'Institut Fourier, Volume 49 (1999) no. 4, pp. 1345-1367. doi : 10.5802/aif.1720. https://aif.centre-mersenne.org/articles/10.5802/aif.1720/
[1] Unions et intersections d'espaces Lp invariantes par translation ou convolution, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 53-84. | Numdam | MR | Zbl
, and ,[2] Geometry of Manifolds, Academic Press, New York, 1964. | Zbl
and ,[3] Untersuchungen über dire Grundlagen der Thermodynamik, Math. Ann., 67 (1909), 355-386.
,[4] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., 17 (1982), 15-53. | MR | Zbl
, and ,[5] Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1940), 98-115. | JFM | MR | Zbl
,[6] Dimension à l'infini d'un semi-groupe analytique, Bull. Sci. Math., 114 (1990), 485-500. | MR | Zbl
,[7] Noyau de la chaleur et discrétisation d'une variété riemannienne, Israel J. Math., 80 (1992), 289-300. | MR | Zbl
,[8] Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana, 11 (1995), 687-726. | MR | Zbl
, ,[9] Semi-groupes d'opérateurs et espaces fonctionnels sur les groupes de Lie, J. Approx. Theory, 65 (1991), 176-199. | MR | Zbl
, ,[10] Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup., 13 (1980), 419-435. | Numdam | MR | Zbl
,[11] Heat Kernels and Spectral Theory, Cambridge Tract in Math. 92, Cambridge University Press, Cambridge, 1989. | MR | Zbl
,[12] Gaussian upper bounds for the heat kernels of some second order operators on Riemannian manifolds, J. Funct. Anal., 80 (1988), 16-32. | MR | Zbl
,[13] Sharp heat bounds for some Laplace operators, Quart. J. Math. Oxford, 40 (1989), 281-290. | MR | Zbl
and ,[14] Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522. | MR | Zbl
and ,[15] Amalgams of Lp and lq, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21. | MR | Zbl
and ,[16] Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc., 10 (1975), 295-305. | MR | Zbl
,[17] Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. | MR | Zbl
,[18] Rough isometries, and combinatorial approximation of non-compact Riemannian manifolds, J. Math. Soc. Japan, 37 (1985), 391-413. | MR | Zbl
,[19] On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201. | MR | Zbl
and ,[20] Balls and metrics defined by vector fields. I: Basic properties, Acta Math., 155 (1985), 103-147. | MR | Zbl
, and ,[21] Elliptic Operators and Lie Groups, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1991. | Zbl
,[22] Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom., 36 (1992), 417-450. | MR | Zbl
,[23] Analysis on Lie groups, J. Funct. Anal., 76 (1988), 346-410. | MR | Zbl
,[24] Analysis and Geometry on Groups, Cambridge Tract in Math. 100, Cambridge University Press, Cambridge, 1992. | Zbl
, and ,[25] Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. | MR | Zbl
,Cited by Sources: