Riesz potentials and amalgams
Annales de l'Institut Fourier, Volume 49 (1999) no. 4, pp. 1345-1367.

Let (M,d) be a metric space, equipped with a Borel measure μ satisfying suitable compatibility conditions. An amalgam A p q (M) is a space which looks locally like L p (M) but globally like L q (M). We consider the case where the measure μ(B(x,ρ) of the ball B(x,ρ) with centre x and radius ρ behaves like a polynomial in ρ, and consider the mapping properties between amalgams of kernel operators where the kernel kerK(x,y) behaves like d(x,y) -a when d(x,y)1 and like d(x,y) -b when d(x,y)1. As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems for Laplace–Beltrami operators on Riemannian manifolds and for certain subelliptic operators on Lie groups of polynomial growth.

Soit (M,d) un espace métrique, muni d’une mesure borélienne μ telle que la mesure μ(B(x,ρ)) de la boule B(x,ρ) de centre x et de rayon ρ soit polynomiale en ρ. Un amalgame A p q (M) est un espace de fonctions qui ressemble localement à L p (M) et globalement à L q (M). On étudie les applications linéaires entre amalgames dont les noyaux se comportent comme d(x,y) -a quand d(x,y)1 et comme d(x,y) -b quand d(x,y)1. On démontre un théorème de régularité du type Hardy–Littlewood–Sobolev pour l’opérateur de Laplace–Beltrami sur certaines variétés riemanniennes et pour certains opérateurs sous-elliptiques sur les groupes de Lie à croissance polynomiale.

@article{AIF_1999__49_4_1345_0,
     author = {Cowling, Michael and Meda, Stefano and Pasquale, Roberta},
     title = {Riesz potentials and amalgams},
     journal = {Annales de l'Institut Fourier},
     pages = {1345--1367},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {4},
     year = {1999},
     doi = {10.5802/aif.1720},
     zbl = {0938.47027},
     mrnumber = {2000i:47058},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1720/}
}
TY  - JOUR
AU  - Cowling, Michael
AU  - Meda, Stefano
AU  - Pasquale, Roberta
TI  - Riesz potentials and amalgams
JO  - Annales de l'Institut Fourier
PY  - 1999
SP  - 1345
EP  - 1367
VL  - 49
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1720/
DO  - 10.5802/aif.1720
LA  - en
ID  - AIF_1999__49_4_1345_0
ER  - 
%0 Journal Article
%A Cowling, Michael
%A Meda, Stefano
%A Pasquale, Roberta
%T Riesz potentials and amalgams
%J Annales de l'Institut Fourier
%D 1999
%P 1345-1367
%V 49
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1720/
%R 10.5802/aif.1720
%G en
%F AIF_1999__49_4_1345_0
Cowling, Michael; Meda, Stefano; Pasquale, Roberta. Riesz potentials and amalgams. Annales de l'Institut Fourier, Volume 49 (1999) no. 4, pp. 1345-1367. doi : 10.5802/aif.1720. https://aif.centre-mersenne.org/articles/10.5802/aif.1720/

[1] J.-P. Bertrandias, C. Datry and C. Dupuis, Unions et intersections d'espaces Lp invariantes par translation ou convolution, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 53-84. | Numdam | MR | Zbl

[2] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, Academic Press, New York, 1964. | Zbl

[3] C. Carathéodory, Untersuchungen über dire Grundlagen der Thermodynamik, Math. Ann., 67 (1909), 355-386.

[4] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., 17 (1982), 15-53. | MR | Zbl

[5] W.L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1940), 98-115. | JFM | MR | Zbl

[6] T. Coulhon, Dimension à l'infini d'un semi-groupe analytique, Bull. Sci. Math., 114 (1990), 485-500. | MR | Zbl

[7] T. Coulhon, Noyau de la chaleur et discrétisation d'une variété riemannienne, Israel J. Math., 80 (1992), 289-300. | MR | Zbl

[8] T. Coulhon, L. Saloff-Coste, Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana, 11 (1995), 687-726. | MR | Zbl

[9] T. Coulhon, L. Saloff-Coste, Semi-groupes d'opérateurs et espaces fonctionnels sur les groupes de Lie, J. Approx. Theory, 65 (1991), 176-199. | MR | Zbl

[10] C.B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup., 13 (1980), 419-435. | Numdam | MR | Zbl

[11] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge Tract in Math. 92, Cambridge University Press, Cambridge, 1989. | MR | Zbl

[12] E.B. Davies, Gaussian upper bounds for the heat kernels of some second order operators on Riemannian manifolds, J. Funct. Anal., 80 (1988), 16-32. | MR | Zbl

[13] E.B. Davies and M.M.H. Pang, Sharp heat bounds for some Laplace operators, Quart. J. Math. Oxford, 40 (1989), 281-290. | MR | Zbl

[14] G.B. Folland and E.M. Stein, Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522. | MR | Zbl

[15] J.J.F. Fournier and J. Stewart, Amalgams of Lp and lq, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21. | MR | Zbl

[16] F. Holland, Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc., 10 (1975), 295-305. | MR | Zbl

[17] L. Hörmander, Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. | MR | Zbl

[18] M. Kanai, Rough isometries, and combinatorial approximation of non-compact Riemannian manifolds, J. Math. Soc. Japan, 37 (1985), 391-413. | MR | Zbl

[19] P. Li and S.T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201. | MR | Zbl

[20] A. Nagel, E.M. Stein and S. Wainger, Balls and metrics defined by vector fields. I: Basic properties, Acta Math., 155 (1985), 103-147. | MR | Zbl

[21] D.W. Robinson, Elliptic Operators and Lie Groups, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1991. | Zbl

[22] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom., 36 (1992), 417-450. | MR | Zbl

[23] N.Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal., 76 (1988), 346-410. | MR | Zbl

[24] N.Th. Varopulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tract in Math. 100, Cambridge University Press, Cambridge, 1992. | Zbl

[25] S.-T. Yau, Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. | MR | Zbl

Cited by Sources: