Soit un espace métrique, muni d’une mesure borélienne telle que la mesure de la boule de centre et de rayon soit polynomiale en . Un amalgame est un espace de fonctions qui ressemble localement à et globalement à . On étudie les applications linéaires entre amalgames dont les noyaux se comportent comme quand et comme quand . On démontre un théorème de régularité du type Hardy–Littlewood–Sobolev pour l’opérateur de Laplace–Beltrami sur certaines variétés riemanniennes et pour certains opérateurs sous-elliptiques sur les groupes de Lie à croissance polynomiale.
Let be a metric space, equipped with a Borel measure satisfying suitable compatibility conditions. An amalgam is a space which looks locally like but globally like . We consider the case where the measure of the ball with centre and radius behaves like a polynomial in , and consider the mapping properties between amalgams of kernel operators where the kernel behaves like when and like when . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems for Laplace–Beltrami operators on Riemannian manifolds and for certain subelliptic operators on Lie groups of polynomial growth.
@article{AIF_1999__49_4_1345_0, author = {Cowling, Michael and Meda, Stefano and Pasquale, Roberta}, title = {Riesz potentials and amalgams}, journal = {Annales de l'Institut Fourier}, pages = {1345--1367}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {4}, year = {1999}, doi = {10.5802/aif.1720}, zbl = {0938.47027}, mrnumber = {2000i:47058}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1720/} }
TY - JOUR AU - Cowling, Michael AU - Meda, Stefano AU - Pasquale, Roberta TI - Riesz potentials and amalgams JO - Annales de l'Institut Fourier PY - 1999 SP - 1345 EP - 1367 VL - 49 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1720/ DO - 10.5802/aif.1720 LA - en ID - AIF_1999__49_4_1345_0 ER -
%0 Journal Article %A Cowling, Michael %A Meda, Stefano %A Pasquale, Roberta %T Riesz potentials and amalgams %J Annales de l'Institut Fourier %D 1999 %P 1345-1367 %V 49 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1720/ %R 10.5802/aif.1720 %G en %F AIF_1999__49_4_1345_0
Cowling, Michael; Meda, Stefano; Pasquale, Roberta. Riesz potentials and amalgams. Annales de l'Institut Fourier, Tome 49 (1999) no. 4, pp. 1345-1367. doi : 10.5802/aif.1720. https://aif.centre-mersenne.org/articles/10.5802/aif.1720/
[1] Unions et intersections d'espaces Lp invariantes par translation ou convolution, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 53-84. | Numdam | MR | Zbl
, and ,[2] Geometry of Manifolds, Academic Press, New York, 1964. | Zbl
and ,[3] Untersuchungen über dire Grundlagen der Thermodynamik, Math. Ann., 67 (1909), 355-386.
,[4] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., 17 (1982), 15-53. | MR | Zbl
, and ,[5] Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1940), 98-115. | JFM | MR | Zbl
,[6] Dimension à l'infini d'un semi-groupe analytique, Bull. Sci. Math., 114 (1990), 485-500. | MR | Zbl
,[7] Noyau de la chaleur et discrétisation d'une variété riemannienne, Israel J. Math., 80 (1992), 289-300. | MR | Zbl
,[8] Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana, 11 (1995), 687-726. | MR | Zbl
, ,[9] Semi-groupes d'opérateurs et espaces fonctionnels sur les groupes de Lie, J. Approx. Theory, 65 (1991), 176-199. | MR | Zbl
, ,[10] Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup., 13 (1980), 419-435. | Numdam | MR | Zbl
,[11] Heat Kernels and Spectral Theory, Cambridge Tract in Math. 92, Cambridge University Press, Cambridge, 1989. | MR | Zbl
,[12] Gaussian upper bounds for the heat kernels of some second order operators on Riemannian manifolds, J. Funct. Anal., 80 (1988), 16-32. | MR | Zbl
,[13] Sharp heat bounds for some Laplace operators, Quart. J. Math. Oxford, 40 (1989), 281-290. | MR | Zbl
and ,[14] Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522. | MR | Zbl
and ,[15] Amalgams of Lp and lq, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21. | MR | Zbl
and ,[16] Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc., 10 (1975), 295-305. | MR | Zbl
,[17] Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. | MR | Zbl
,[18] Rough isometries, and combinatorial approximation of non-compact Riemannian manifolds, J. Math. Soc. Japan, 37 (1985), 391-413. | MR | Zbl
,[19] On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201. | MR | Zbl
and ,[20] Balls and metrics defined by vector fields. I: Basic properties, Acta Math., 155 (1985), 103-147. | MR | Zbl
, and ,[21] Elliptic Operators and Lie Groups, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1991. | Zbl
,[22] Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom., 36 (1992), 417-450. | MR | Zbl
,[23] Analysis on Lie groups, J. Funct. Anal., 76 (1988), 346-410. | MR | Zbl
,[24] Analysis and Geometry on Groups, Cambridge Tract in Math. 100, Cambridge University Press, Cambridge, 1992. | Zbl
, and ,[25] Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. | MR | Zbl
,Cité par Sources :