Harmonic metrics and connections with irregular singularities
Annales de l'Institut Fourier, Volume 49 (1999) no. 4, pp. 1265-1291.

We identify the holomorphic de Rham complex of the minimal extension of a meromorphic vector bundle with connexion on a compact Riemann surface X with the L 2 complex relative to a suitable metric on the bundle and a complete metric on the punctured Riemann surface. Applying results of C. Simpson, we show the existence of a harmonic metric on this vector bundle, giving the same L 2 complex.

Nous identifions le complexe de de Rham de l’extension minimale d’un fibré méromorphe à connexion sur une surface de Riemann compacte X au complexe L 2 associé à ce fibré sur la surface de Riemann privée des pôles, lorsqu’on munit celui-ci d’une métrique convenable et la surface épointée d’une métrique complète. En appliquant des résultats de C. Simpson, nous montrons l’existence d’une métrique harmonique sur ce fibré, donnant lieu au même complexe L 2 .

@article{AIF_1999__49_4_1265_0,
     author = {Sabbah, Claude},
     title = {Harmonic metrics and connections with irregular singularities},
     journal = {Annales de l'Institut Fourier},
     pages = {1265--1291},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {4},
     year = {1999},
     doi = {10.5802/aif.1717},
     zbl = {0947.32019},
     mrnumber = {2001f:32051},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1717/}
}
TY  - JOUR
AU  - Sabbah, Claude
TI  - Harmonic metrics and connections with irregular singularities
JO  - Annales de l'Institut Fourier
PY  - 1999
SP  - 1265
EP  - 1291
VL  - 49
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1717/
DO  - 10.5802/aif.1717
LA  - en
ID  - AIF_1999__49_4_1265_0
ER  - 
%0 Journal Article
%A Sabbah, Claude
%T Harmonic metrics and connections with irregular singularities
%J Annales de l'Institut Fourier
%D 1999
%P 1265-1291
%V 49
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1717/
%R 10.5802/aif.1717
%G en
%F AIF_1999__49_4_1265_0
Sabbah, Claude. Harmonic metrics and connections with irregular singularities. Annales de l'Institut Fourier, Volume 49 (1999) no. 4, pp. 1265-1291. doi : 10.5802/aif.1717. https://aif.centre-mersenne.org/articles/10.5802/aif.1717/

[1] O. Biquard, Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse), Ann. Scient. Éc. Norm. Sup., 4e série, 50 (1997), 41-96. | Numdam | MR | Zbl

[2] M. Cornalba, P. Griffiths, Analytic cycles and vector bundles on noncompact algebraic varieties, Invent. Math., 28 (1975), 1-106. | MR | Zbl

[3] J.-P. Demailly, "Théorie de Hodge L2 et théorèmes d'annulation", Introduction à la théorie de Hodge, Panoramas et Synthèses, vol. 3, Société Mathématique de France, 1996, 3-111.

[4] M. Kashiwara, Semisimple holonomic D-modules, in [6]. | Zbl

[5] M. Kashiwara, T. Kawai, The Poincaré lemma for variations of polarized Hodge structure, Publ. RIMS, Kyoto Univ., 23 (1987), 345-407. | MR | Zbl

[6] M. Kashiwara, K. Saito, A. Matsuo, I. Satake (eds.), Topological Field Theory, Primitive Forms and Related Topics, Progress in Math., vol. 160, Birkhäuser, Basel, Boston, 1998. | Zbl

[7] B. Malgrange, Équations différentielles à coefficients polynomiaux, Progress in Math., vol. 96, Birkhäuser, Basel, Boston, 1991. | MR | Zbl

[8] B. Opic A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics, vol. 219, Longman Scientific & Technical, Harlow, 1990. | MR | Zbl

[9] Y. Sibuya, Linear Differential Equations in the Complex Domain : Problems of Analytic Continuation, Translations of Mathematical Monographs, vol. 82, American Math. Society, Providence, RI, 1976 (japanese) and 1990. | Zbl

[10] C. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867-918. | MR | Zbl

[11] C. Simpson, "Harmonic bundles on noncompact curves", J. Amer. Math. Soc., 3 (1990), 713-770. | MR | Zbl

[12] W. Wasow, Asymptotic expansions for ordinary differential equations, Interscience, New York, 1965. | MR | Zbl

[13] S. Zucker, Hodge theory with degenerating coefficients : L2-cohomology in the Poincaré metric, Ann. of Math., 109 (1979), 415-476. | MR | Zbl

Cited by Sources: