Without relying on the classification of compact complex surfaces, it is proved that every such surface with even first Betti number admits a Kähler metric and that a real form of the classical Nakai-Moishezon criterion holds on the surface.
Sans utiliser la classification des surfaces compactes complexes, on démontre qu’une telle surface dont le premier nombre de Betti est pair possède une métrique kählérienne, et qu’une version réelle du critère classique de Nakai-Moishezon est valable sur la surface.
@article{AIF_1999__49_1_287_0, author = {Buchdahl, Nicholas}, title = {On compact {K\"ahler} surfaces}, journal = {Annales de l'Institut Fourier}, pages = {287--302}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {1}, year = {1999}, doi = {10.5802/aif.1674}, zbl = {0926.32025}, mrnumber = {2000f:32029}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1674/} }
TY - JOUR AU - Buchdahl, Nicholas TI - On compact Kähler surfaces JO - Annales de l'Institut Fourier PY - 1999 SP - 287 EP - 302 VL - 49 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1674/ DO - 10.5802/aif.1674 LA - en ID - AIF_1999__49_1_287_0 ER -
Buchdahl, Nicholas. On compact Kähler surfaces. Annales de l'Institut Fourier, Volume 49 (1999) no. 1, pp. 287-302. doi : 10.5802/aif.1674. https://aif.centre-mersenne.org/articles/10.5802/aif.1674/
[BPV] Compact Complex Surfaces, Berlin-Heidelberg-New York, Springer, 1984. | MR | Zbl
, and ,[CP] Algebraicity of the ample cone of projective varieties, J. reine angew. Math., 407 (1990), 160-166. | MR | Zbl
and ,[D1] Regularization of closed positive currents and intersection theory, J. Alg. Geom., 1 (1992), 361-409. | MR | Zbl
,[D2] Regularization of closed positive currents of type (1,1) by the flow of a Chern connection, in: Contributions to complex analysis and analytic geometry: dedicated to Pierre Dolbeault, ed. H. Skoda and J. M. Trépreau, Wiesbaden, Vieweg 1994. | Zbl
,[G] Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris, 285 (1977), 387-390. | MR | Zbl
,[GT] Elliptic partial differential equations of second order, 2nd ed. Berlin-Heidelberg-New York, Springer, 1983. | MR | Zbl
and ,[GH] Principles of Algebraic Geometry, New York, Wiley, 1987.
and ,[HL] An intrinsic characterisation of Kähler manifolds, Invent. Math., 74 (1983), 169-198. | MR | Zbl
and ,[MK] Complex Manifolds, Holt-Rinehart & Wilson, New York, 1971. | MR | Zbl
and ,[M] Kähler metrics on elliptic surfaces, Proc. Japan Acad., 50 (1974), 533-536. | MR | Zbl
,[S1] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27 (1974), 53-156. | MR | Zbl
,[S2] Review of [T] in Mathematical Reviews, (1982) MR#82k:32065.
,[S3] Every K3 surface is Kähler, Invent. Math., 73 (1983), 139-150. | MR | Zbl
,[T] Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Invent. Math., 61 (1980), 251-265. | MR | Zbl
,[Y] On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math., 31 (1978), 339-411. | MR | Zbl
,Cited by Sources: