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ON COMPACT KAHLER SURFACES

by Nicholas BUCHDAHL

0. Introduction.

As a consequence of the Hodge identities [GH], a compact complex
manifold which admits a Kéhler metric must have all of its odd-dimensional
Betti numbers even. In [MK], p. 85, Kodaira conjectured that for complex
surfaces the converse is true; i.e., that every compact complex surface X
with b (X) even admits a Kéhler metric.

By virtue of Kodaira’s own classification of compact complex surfaces,
many special cases of the conjecture automatically follow, leaving only the
cases of elliptic surfaces and K3 surfaces. Miyaoka [M] proved that the
conjecture holds for elliptic surfaces, and this was reproved by Harvey and
Lawson [HL] using the theory of currents; this left only the K3 surfaces.

In [T], Todorov presented a proof that every K3 surface admits a
Kahler metric using Yau’s then recently-proved results [Y] on the Cal-
abi conjecture. Unfortunately, as pointed out by Siu in his review [S2],
Todorov’s proof contained some serious errors. In his own paper [S3], Siu
was able to overcome the difficulties in Todorov’s proof to finally prove
that every K3 surface is Kdhler, thereby completing the proof of Kodaira’s
conjecture.

A unified proof of the conjecture which does not invoke the classi-
fication of compact complex surfaces has hitherto remained lacking. Fur-
thermore, if a given surface X does admit a Kahler metric, in general it is
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not known how many such metrics there are; i.e., which classes in Hni’l(X )
can be represented by positive closed (1, 1)-forms. The well-known Nakai-
Moishezon criterion provides an answer in the case of integral cohomology
classes: a class p € HV1(X) N H%(X,Z) can be represented by such a form
if and only if it satisfies p- p > 0 and p - [D] > 0 for every effective divisor
D on X; (see e.g., [BPV]). Campana and Peternell [CP| have generalised
this result to the case of real cohomology classes on projective algebraic
varieties, but a general characterisation remains lacking.

In this paper, the following results are proved, respectively given in
Theorem 11, Corollary 15 and Theorem 16 of §4:

THEOREM. — A compact complex surface X with b;(X) = 0(mod 2)
admits a Kéahler metric.

THEOREM. — Let X be a compact complex surface with b;(X) =
0(mod2) and let p € Hﬂlz’l(X) be a class satisfying p-p > 0, p-[D] > 0
and p - [w] > 0 for every effective divisor [D] on X and some positive
closed (1,1)-form w on X. Then p can be represented by a positive closed
(1,1)-form.

THEOREM. — Suppose bi(X) is even and w € Anlz’l(X) is 00-
closed and positive. If ¢ € Aﬂlk’l(X ) is 88-closed and satisfies [, ¢* > 0,
fx wAp >0 and fD @ > 0 for every effective divisor D C X, then ¢ is
homologous to a smooth 00-closed positive (1,1)-form modulo the image
of 0.

The key ingredients in the proofs are Gauduchon’s results [G] on
the existence of 99-closed positive (1,1)-forms on compact surfaces, Siu’s
theorem [S1] on the analyticity of the sets associated with the Lelong
numbers of closed positive currents, and Demailly’s results [D1], [D2] on
the smoothing of positive closed (1, 1)-currents.

1. Preliminaries.

The purpose of this section is to establish notation, review some well-
known facts concerning Kéhler metrics (details of which can be found in
[GH] §7 Chapter 0) and to establish some basic results.

Let X be a compact complex manifold. Denote by AP'? the sheaf of
germs of smooth (p, g)-forms on X, and set AP9(X) :=T'(X, AP9).
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A hermitian metric h on X corresponds to a positive (1,1)-form
w € A,llk’l(X ), where the subscript denotes invariance under complex
conjugation. In local holomorphic coordinates {z%}, w is given by w =

%hagdz“/\dzi7 ifh= hagdz“@)dz’_’. The form w is the Kahler form associated
to the metric, and the metric itself is Kahler if dw = 0.

The Kahler form w determines a volume form on X given by dV =

%w" where n is the dimension of X. The adjoint of the map AP? > f —
w A f € APTL9+1 is denoted by A; up to a combinatorial factor, A is
contraction with the inverse h%® of hes- If dw = 0, the formal adjoints
of the operators d and & on AP are found to be 9* = iAd — i0A
and 0* = —iAd + i0A, from which it follows that the O Laplacian
A" = 00* 4+ 0*0 agrees with the 0 Laplacian /', each being one half
of the full Laplacian A = dd* + d*d. As a consequence, there is an R-linear
isomorphism between HP(X,Q9?) and H?(X,QP) determined by complex
conjugation of harmonic representatives, and the decomposition of r-forms
into forms of type (p,r — p), which is preserved by the Laplacian, shows
that the Betti numbers of X of odd degree must be even.

Although X need not admit a K&hler metric, Gauduchon [G] has
shown that there is a conformal rescaling of the metric kA, unique up to
a positive constant, such that the associated form satisfies 99(w™~!) = 0.
Given such a form, the Maximum Principle implies the adjoint of the elliptic
operator P := x(w" "1 Ai03) on functions (i.e., P*: f — %i00(w™ ! f)) has
only the constants as kernel since P* annihilates the constants. It follows
from standard L? harmonic theory that for each f € L2(X) satisfying
Jx fdV = 0 there is a function v € L3(X) satisfying Pu = f, with u
unique up the addition of a constant; here LY (X) denotes the functions in
LP(X) with weak derivatives up to and including order k also in LP(X).
Moreover, standard regularity arguments apply to P, so for example u is
smooth if f is smooth.

In the case of a compact complex surface, the splitting of 2-forms into
types is compatible with the splitting of forms into self-dual and anti-self-
dual parts from the underlying Riemannian metric induced by h; namely,
A2 ®C= A% @ A% @ A0 and A2 ® C = kerwA : AV — A?2, Hence
for a real (1, 1)-form 1,

wAY = (A¢)w2/2
*) = (AMp)w — 9
[Y|2dV = A xp = (Ap)? w?/2 — 2.
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The Hilbert space of (p,q)-forms on X with coefficients in L? is
denoted throughout by APY®L?(X). Unless otherwise indicated, ||-|| always
denotes the L? norm induced by w on this space.

Let d! be the composition of d: A — A? with the projection
AZ - AL,

LEMMA 1. — Let X be a compact complex surface equipped with
a smooth positive d0-closed (1,1)-form w. Then d'': A} ® L3(X) —
Ag' ® L*(X) has closed range.

Proof. — Let {v;} be a sequence of real 1-forms on X with coef-
ficients in L? such that 1; := d“'v; is converging in L? to some ¢ €
A]}t’l ® L?(X). Write v; = u; +1; for some (0, 1)-form w;, so ¥; = Ou; + 04;.

By smoothing and diagonalising, it can be assumed without loss of
generality that u; is smooth for each 7. Using Stokes’ Theorem,

i = [ (awyt - [ o
X b's
- / (At)2w? + 2 / Bus A 01; = 2|Ads|2 + 2[Bus 2
X X
so it follows that dv; = dVv; + du; + 04, is bounded in L2.

Let ©; be the L? projection of v; perpendicular to the kernel of
d, so d*¥; = 0 and v; is perpendicular to the harmonic 1-forms. Hence
there is a constant C such that [|%;[|z < C(||d;| + [[d*9;]|]) < Const.,
so a subsequence of the sequence {©;} converges weakly in L? to some
7 € A} ® L?(X). Since dV19; = ¢; it follows db'9 = 4, proving the
claim. o

LEMMA 2. — If9y € Aﬂlg1 ® L?(X) is weakly 00-closed there exists
u € A% ® L3(X) such that ¢ + Ou + Ot is smooth.

Proof. — Let 1 be the L? projection of ¥ perpendicular to the image
of d!, s0 9 = 1 + du + du for some u € A% ® L3(X) by Lemma 1.
Then [, P A*(Ov+07) =0 = Ix oA *(i0v — i0v) for every (0,1)-form
v with coefficients in L2, implying 8(*})) = 0 = (xip) weakly. Hence
dA(xY) = 0 = DAY weakly, so D((AY)w) = 0 in the sense of distributions.
Standard regularity theorems imply that A'(ZJ is constant, and then the
equations d*’J) =0, d1/; = (AzZ) dw together with elliptic regularity imply 1/~)
is smooth. } O
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Remark. — Note that this argument shows that any weakly d-closed
X € AI}R’I ® L%(X) satisfying w A x = cw? for some constant c is in fact
smooth.

LEMMA 3. — If ¢ € Ay' ® L*(X) is weakly 89-closed there is a
sequence of smooth d0-closed real (1, 1)-forms v; converging to 1 in L?.

Proof. — By Lemma 2, ¥ = ¢ — Ou — du for some smooth ¥ and
some (0,1)-form u with coefficients in L?. Approximating v by smooth
(0,1)-forms then gives the desired result. O

2. The intersection form on the kernel of 93.

If b(X) is even and h € Hy''(X) satisfies h2 > 0, the intersection
form on H2(X,R) restricted to Hg'' (X) is negative definite on the subspace
{v € Hg"'(X) | h-v = 0} (Corollary IV.2.14 [BPV]). Interestingly, on an
arbitrary compact complex surface X a similar statement applies to the
induced form on the dd-closed (1,1)-forms modulo the 88-exact forms, as
shown in Proposition 5 below.

LEMMA 4. — Ify € Ay' ® L2(X) is weakly 00-closed, ([, wA¥)? >
(fx w)(fx ¥?) with equality if and only if ) = cw+i0dg for some constant
¢ and some g € L3(X).

Proof. — Let ¢ := (fyw A 9)/(fyw?). If ¢ is smooth there is
a smooth solution g to the equation w A (¥ — cw — i0dg) = 0, and

9 — ew —i00g|1? = — [ (¥ — cw —i009)* = — [ ¥* + (Jx Y Aw)?/ [ w?.
If 1) is not smooth, the inequality follows from the smooth case after
approximating 1 using Lemma 3.

If (fywA¥)? = ([xw?)([x1¥?), choose a sequence of smooth 98-
closed forms {1} converging to v in L2, and let g; satisfy w A (j — cjw —
i00g;) = 0 where c; is defined as above. Then |v; — cjw — i88g;||* =
— [x ¥? + ¢ [y w? is converging to — [y ¥? + ¢ [y w? = 0. The sequence
{ié@gj} is therefore uniformly bounded in L?, so after normalising g; so
that [, g;dV = 0, a subsequence of {g;} can be found which converges
weakly in L2 to some g € L3(X). By semi-continuity of || - || under weak
limits, || — cw — i08g|| < lim ||¢; — cjw — i0dg;|| = 0, completing the
proof. ]
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PROPOSITION 5. — Let @1, @2 € A]}Q’1 ® L%(X) be weakly 00-closed
and satisfy [, 93 >0 and [y wA@; >0 for j =1,2. Then

/}(@1/\9022(/}(%)1/2(/)(%)1/2

with equality if and only if ¢1 and ¢, are linearly dependent modulo the
image of i00.

Proof. — By Lemma 4 it can be assumed that a; := [, w A ; is
strictly positive for j = 1,2 else ¢, is d0-exact.

To prove the inequality, after replacing ¢; by ¢; + ew and taking the
limit as € \, 0 it can be assumed that fx @? > 0 for j = 1,2, and then by
Lemma 3 it can be assumed without loss of generality that these forms are
both smooth.

Since [, wA (a2p1 — a1p2) = 0, it follows that azp; — aypa + 00y is
anti-self-dual for some function g € A%(X), so

02/(112901—611302)2:@%/ 90%‘*'@%/ 803—20“02/ Y1 N\ P2
X X X X

1 1
> 2a1a2(/ 90?)2(/ 303)2 —2a1a2/ ©1 A P2,
X X X

giving the desired inequality.

Now suppose [y 1A w2 = ([ 93)/2( [y ¢3)*/? (no longer assuming
smoothness or [y 2 > 0). Take sequences {p1 s}, {@24} of smooth 9o-
closed (1,1)-forms converging to (1, @2 respectively in L? and solve the
equations w A (a2 xp1,; — a1,kp2,j + i00gk) = 0 for gr, € AR(X) satisfying
Jx 9edV =0 (with ajx = [, wApj k). Arguing as in the proof of Lemma 4
then yields a weakly convergent subsequence whose limit g € L3(X)
satisfies agp1 — ajpy + 1009 = 0. O

COROLLARY 6. — If ¢ € Ay' ® L*(X) is weakly 00-closed and
satisfies [, ¢* >0 and [y ¢ Aw >0, then [, ¢ Ax > 0 for any other such
form x satisfying [y x* > 0 and [, x Aw > 0. 0

LEMMA 7. — Suppose x € A]]IQ{1 ® L?(X) is weakly 00-closed and
satisfies fX x? > 0 and IXX Aw > 0. For each € > 0 there is a positive
(1,1)-form p. and a function g. such that |x + i00ge — pellr2(x,w) < €.
Moreover, p. and g. can be assumed to be smooth.
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Proof. — If [ x XAw = 0 it follows from Lemma 4 that x is 00-exact,
in which case the result follows from the denseness of the smooth functions
in L3(X). Assume therefore that [, x Aw > 0, and after rescaling x if
necessary, it can be supposed that f xXAw=1

Let
P .= {p e AN (X)®LAX) |p>0ae., / WwAp= 1},
X
Pe:={pe AN (X)® L3(X) | |lp — p|| < € for some p € P},
and H:= {X+i53g|geL§(X)}.

Then P, is an open convex subset of the Hilbert space H := Ay ® L?(X)
and H is a closed convex subset. If P.N'H = @, the Hahn-Banach Theorem
implies there exists ¢ € H and a constant ¢ € R such that [ xPANh<c
and [ x ¢ Ap > c for every h € H and every p € Pe. It follows immediately
that ¢ is weakly 09-closed.

Let g := ¢ — cw. Then ¢y is weakly 09-closed, fX woANx <c—c=0
and [ x %o Apo > 0 for every po € P, s0 g is strictly positive almost
everywhere. Hence |[ X w2 > 0 and / x %o Aw > 0, so it follows from
Corollary 6 that [, o A x > 0, a contradiction.

Therefore P. N H cannot be empty proving the existence of p. and
ge- The last statement of the lemma follows from the denseness of the
smooth positive (1,1)-forms in the L? positive (1,1)-forms and of the
smooth functions in L3(X). o

3. Surfaces with even first Betti number.

Throughout this section, w will be a fixed smooth positive 90-closed
(1,1)-form on the compact complex surface X. All norms and adjoints are
computed using the corresponding hermitian metric.

LEMMA 8. — Let X be a compact complex surface. Then by(X) is
even if and only for each ¢ € AV} (X) satisfying 00y = 0 the equation
01 = 00u can be solved for u € A% (X).

Proof. — Suppose 1 € Ab(X) satisfies 00y = 0. The equation
9y = A0u has a solution u € A% (X) if and only if O+ is perpendicular
to the kernel of the adjoint of 80; that is, if and only if / x WA xOp = 0
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for every w € Ab?(X) such that 89(xw) = 0; equivalently, if and only if
Jx vA0Y =0 for every v (= *w) € AV0(X) satisfying d0v = 0. By Stokes’
Theorem, such a v must satisfy 0 = [, ¥ A 9dv = [, 60 A v = ||0v||?, so
the kernel of 90 on A}(X) is the same as that of 8. If by(X) is even,
Theorem IV.2.9 of [BPV] implies any such v is d-homologous to a d-
closed (1,0)-form, so if d(v + 8g) = 0 for some function g € A%%(X) it
follows fX VAOY = fx(v + 8g) A 0% = 0; hence 9 is in the image of
00: A% (X) — ALM2(X).

Conversely, given v € AM%(X) satisfying dv = 0, the equation
0 = d(v + 8g9) = Gv + 09g can be solved for g € A*°(X) if and only if
Jx Ov Ay =0 for every ¥ € AV}(X) satisfying 98y = 0. If 9y = 9du
it follows [, dv Ay = [, v Ay = [, v ABBu = 0. Thus if the equation
01 = 00u can be solved for each 00-closed 1 it follows that every d-closed
v € AY9(X) is 8-homologous to a d-closed (1,0)-form; this implies that the
natural R-linear map H°(X,Q!) > h — h € H*(X, 0) is an isomorphism.
Hence h%1(X) = hY%(X) implying that b;(X) = A%1(X) + AYO(X) is
even. O

If b;(X) is even, complex conjugation of the above argument shows
that for each d0-closed 1 € AL!(X) there exists v’ € AM%(X) such that
Oy = 0Ou/; if ¢ = v, v/ can be taken to be @. The (1, 1)-form ¥+ du+du/’ is
d-closed, as is the 2-form 1) — Ou— 8u’, with 1 being the (1,1) component of
the latter. It follows from the proof of Lemma, 8 that the form du € A%?(X)
is uniquely determined by v, whereas the form 1+0u+0u’ is determined up
to the addition of a 08-exact term which can be uniquely fixed by requiring
(for example) that w A (1 + Ou + Ou’) be a constant multiple of w?.

Lemma 8 combined with Lemma 2 yields the following useful result:
COROLLARY 9. — Ifb;(X) is even and ¢ € Ay' ® L?(X) is weakly

00-closed, there exists u € A%! ® L?(X) such that 1 + Ou + 01 is d-closed
and smooth. O

Globally, 09-exactness of d-closed forms holds in the same way that
it does on any Kéhler manifold:

LEMMA 10. — Ifb;(X) is even and if € AM! ® L?(X) is d-exact
then ¢ = 0dg for some g € L4(X).

Proof. — Suppose 9 = dv for some v € A ® L2(X). Then the (1,0)
component of v is d-closed and the (0,1) component is d-closed. From the
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second paragraph of the proof of Lemma 8 it follows | xWAY =0, s0
w A (dv + 88g) = 0 for some g € LZ(X). The (1,1)-form d(v + dg) is
therefore anti-self-dual, so ||d(v + 8g)||> = — [ d(v + 8g) A d(v + dg) =0,
giving ¥ = —00g. O

Suppose b; (X) is even and u € A%!(X) is such that & = w + du + Ja
is d-closed and satisfies w A& = cw? for some constant c. Then / x WAOu =
—[xOwAu = [,00unu=—[,00uAu = [,0UAdu=|0ul? so
¢ =1+ |6ul?>/V for V := [, w?/2. Furthermore, [, &% = [y & Aw =
Jxw Aw +2||0u||?. Thus & defines a d-closed element of Hz''(X) which
satisfies [@] - [®] > 0 in H%(X,R) and [@]-[D] > 0 for every effective divisor
D C X; such a form is a very natural candidate to be 9-homologous to a
positive closed (1,1)-form on X.

4. The main results.

Suppose X is a compact complex surface with b;(X) even, and let
w be a fixed smooth positive 98-closed (1,1)-form on X, normalised so
that [, w? = 2. As in §3, let uo be a smooth (0,1)-form on X such that
@ = w + Oug + Ot is d-closed, with [, @2 = 2(1 + ||Ouo||?) =: 2(1 + ao)
and w A Oup = agw?/2.

Let x be a smooth real 80-closed (1, 1)-form satisfying / X x? > 0 and
Jx xA\w > 0, and assume that x has been normalised so that [, x* =2.In
addition, let u be a (0, 1)-form on X such that x = x + Ou+ 94 is d-closed.
Since [y X% = 2+ 2||0u||? =: 2(1 + a), it follows from Proposition 5 that
the number b := (1/2) [, w A x = (1/2) [, @ A x is positive and satisfies
b2 > (14 a)(1 + ag) with equality iff ¥ is 98-homologous to a multiple of
@.

For tg := b— /b2 — (1 + a), the form ¢ := ¥ — tow satisfies 00y = 0,
Jx¥* =0and [ywA@=2(b—to) =2/b?— (1+a) > 0, with equality
iff w is d-closed and ¥ is 08-homologous to a multiple of w.

Assume that b—tg = \/b% — (1 + a) is strictly positive. By Lemma 7,
for each n € N there is a smooth positive (1,1)-form p, and a smooth
function g,, such that ||¢ + i00g, — pn| < 1/n.

Since [y pn A w is converging to 2(b — to) the positive functions
(Apn)l/ 2 are uniformly bounded in L? so a subsequence can be found
converging weakly in L2. The forms p,/Ap, are bounded in L> so a
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subsequence of these forms can also be found converging weakly in L*
say. The sequence {i08g,} is uniformly bounded in L! so after adding
a constant so that [ x 9ndV = 0, by the Sobolev embedding theorem a
subsequence of {g,} can be assumed to converge weakly in L‘ll/ dnr?
and strongly in L? for some fixed ¢ € (1,2) to some function g. Thus
the subsequence of positive forms p,, converges in the sense of currents to
define a positive (1,1)-current p with ¢ +i09g = p, and it follows that the
current P := p+tow = X +100g is a closed positive (1, 1)-current satisfying
P > tow. Note that since Ap € L and p/|Ap| € L™, the current P lies in
L.

Let v(P,z) denote the Lelong number of P at z; ((GH], p. 391).
For ¢ > 0, the sublevel set E.(P) = {z € X | v(P,z) > c} is a proper
analytic subset of X by Siu’s Theorem [S1]. By Lemmas 6.2 and 6.3 of that
same paper, if D is an irreducible 1-dimensional component of E.(P) and
v := inf{v(P,z) | z € D}, v(P,z) = v for almost all z € D and P —1y[D]
is positive. (Although Siu’s lemmas consider the case of smooth D, upper
semicontinuity of the Lelong number implies the same results even if D has
singularities.)

Fix a number K > 0 such that the curvature © of the Chern
connection on Tx induced by w satisfies ® > —Kw ® Idr, and let
¢ > 0 be such that tg — cK > 0. If Dq,...,D, are the irreducible 1-
dimensional components of E.(P) and v; := inf{v(P,z) | x € D;}, the
closed (1,1)-current T := P — Y v;[D;] is positive and the c-sublevel
set E.(T) of this current is 0-dimensional. By Theorem 6.1 of [D2] (see
also [D1] for more complete results), there is a 1-parameter family T, . of
closed almost positive (1,1)-currents in the same cohomology class as T'
which is converging weakly to T as € \, 0, with T, smooth off E.(T),
Te,e > (to — min{ve,c} K — é.)w for some continuous functions v on X
and constants 8. satisfying v.(z) \, v(T,z) for each z € X and 8. \, 0
as € \, 0. Moreover, v(T,.,z) = (v(T,z) — c¢)+ at each point of z. For €
sufficiently small therefore, T, . > t;w for some t; > 0, where ¢; can be
chosen arbitrarily close to ¢y if ¢ and € are small enough.

The current T, . is smooth off the 0-dimensional set E.(T); that is,
off a finite set of points. In a neighbourhood of any such point zy, T; . can
be represented by a strictly plurisubharmonic function f say: T, . = i00f
with f smooth off zy. Using a standard mollifying function as in [GT],
p- 147, f can be smoothed in a neighbourhood of zy to a family f; of
strictly plurisubharmonic functions converging to f, and on an annular
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region surrounding x¢ the convergence of this sequence is uniform in C* for
any k (by Lemma 4.1 and the accompanying discussion in [GT]). If p is a
standard cutoff function which is 1 on the exterior of the annulus and 0 on
the interior region, pf + (1 — p)f: is a smooth plurisubharmonic function
for t sufficiently small which agrees with f outside the annulus.

Hence the current T . is 58—homologous to a smooth positive closed
form 7 . for € > 0 sufficiently small; moreover for any t; < t, there is some
c and € such that 7. > t;w. Thus:

THEOREM 11. — A compact complex surface X with b1(X) even
admits a Kahler metric. a

Suppose now that x = w, so x = ©, b = 1+ a9 and tyg =
]
1+ a9 — vao(l+ag) = (1 + ﬁ"a—o) . Assume that w is not d-closed,
80 ag # 0 and therefore ¢y < 1.

The cohomology class of 7. is the same as that of T which is in
turn the same as that of @ — D for D := " v;[D;]. Here and subsequently
the notation is abused in the standard way by identifying a d-closed (1, 1)-
form with its image in H''!(X) and vice versa; unless otherwise stated, the
(1,1)-form representing a given class will always be that which has self-
dual component a constant multiple of w. In the same vein, the notation
¥ - x will be used to denote [, 1 A x for d-closed (1, 1)-forms ¢, x; thus
HE (X) 3 4 2@-9)2(@-0) L =9t = (14+a0) " (@-)2 = -1 = [4]12
defines a norm on Hﬂi’l (X) since the cup-product pairing is negative definite
on the orthogonal complement of @.

If 1 < to is such that 7. > tiw, a short calculation using the fact

that 7. = @ — D in Hg"'(X) yields
0 S / (Tc,e - tlw)2 = [2(1 +a0) - 4t1(1 +a0) + 2t%] +D-D— 2((:) — tlw) -D.

X
Here w-D := [y wAD =31 fDi w, a non-negative term which is 0 iff
D =0in H]é’l(X). Since D is d-closed, @ - D = w - D, so the last term on
the right of the inequality is —2(1 — ¢;)w - D.

Since D - D = —||D|% + (w - D)?(1 + ag) !, the inequality can be
rewritten D

w
ID[12 < [2(1 + ao) — 4t1 (1 + ao) + 2t3] + Ta [w-D—2(1+ao)(1—t1)].
0
By Proposition 5, 0 < & - (7. — tiw) = 2(1 4+ ag)(1 — ¢t1) —w - D, implying
D)2 < 2(1 + ag) — 4t1(1 + ag) + 2t = 2(to — t1)[2(1 + ag) + to + t1];
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(equality will hold only if D is homologous to a multiple of @).

Now choose a sequence of constants t; increasing to ty and corre-
sponding constants ¢; and €; so that 7, ., > t,w, with 7¢, ¢, = @ — D(;) say
in Hnlt’l(X ). It follows immediately from the last inequality above that the
corresponding sequence of classes D(; is converging to 0 in Hn]i’l(X ) and
therefore the corresponding representative (1,1)-forms (which have self-
dual component a constant multiple of w) are converging to 0 in L?(X); by
elliptic regularity and choice of representatives, these forms are converging
to 0 in C%(X). Since 7, ¢, > tw, it follows that for i large enough the form
Teie; + D3y is positive; i.e., @ is 00-homologous to a smooth positive closed
form. This proves:

THEOREM 12. — If X is a compact complex surface with by (X) even
and w is a positive 00-closed (1,1)-form on X, there exists u € A%'(X)
such that @ = w + Ou + 01 is d-closed and positive. ]

COROLLARY 13. — If X is a compact complex surface with by (X)
even and P is a 30-closed positive (1,1)-current, there is a (0, 1)-current U
on X such that P + 0U + 0U is a d-closed positive current.

Proof. — The (2,1)-current OP is O-closed. By smoothing of coho-
mology ([GH], p. 385), there is a (2, 0)-current V on X such that 9P -9V is
a smooth O-closed (2, 1)-form. Then V is a d-closed current on X so by the
same result there is a (1, 0)-current W such that V —90W is a smooth (2, 0)-
form. Then 0P — 0W is a smooth O-closed (2, 1)-form. As in the proof of
Lemma 8, the fact that b,(X) is even implies that 0P — 0W = 00w for
some smooth (1,0)-form w, so for some (0, 1)-current U the (1, 1)-current
P:= P+ 90U + U is d-closed.

If there is no real (0,0)-current G such that P + id8G is positive,
then as in the proof of Theorem 14 of [HL], there is a smooth positive 99-
closed (1,1)-form 1 with P(3) < 0. But by Theorem 12, 1 is homologous
to a positive closed (1,1)-form ¢ modulo the image of d! so 0 < P(¢)) =
P(¢)) = P(3) <0, a contradiction. O

THEOREM 14. — Suppose by(X) is even and w € Ay'(X) is dO-
closed and positive. If ¢ € A,,lgl(X ) is 80-closed and satisfies [, ¢* > 0,
wa AN > 0 and fD ¢ > 0 for every irreducible divisor D C X, then ¢

is homologous to a smooth closed positive (1,1)-form modulo the image of
9+ 0.
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Remark. — The hypothesis | xW A @ > 0 can not be omitted in
general even if X has at least one curve D. For example, if ¥ is a K3
surface with no divisors at all and yg € Y, let X be the blowup of Y at yq
with blowing down map 7: X — Y and exceptional divisor D = 7~ 1(yp).
If wo is a positive closed (1,1)-form and p is a smooth closed (1,1)-form
on X with [p] = [D] in Hy'(X), ¢ := —7*wp — €p satisfies Jx ©* > 0 for
€ > 0 sufficiently small and [ p % > 0, but ¢ can never be homologous to a
positive (1,1)-form modulo the image of 8 + 9 since [, T*wo A ¢ < 0.

Proof of Theorem 14. — If ¢ is not homologous to a positive (1, 1)-
form modulo the image of & + 0 (i.e., ¢ + Ou + 04 is not positive for
any u € A®1(X)), by the Hahn-Banach theorem there is a positive closed
(1,1)-current P such that P(yp) < 0.

Arguing as in the proof of Theorem 11, for any € > 0 there is a
real effective divisor D = Y v; D; such that P — D is homologous modulo
the image of 09 to a smooth real closed (1,1)-form 7 with 7 > —ew. By
Corollary 6, 0 < [y A (T + ew) = P(p) = 2 vi [p o +e[xp Aw. If
P(p) < 0, a contradiction results by choosing e sufficiently small so it may
be assumed that P(p) = 0.

Now choose a sequence ¢; \, 0 and smooth forms 7; > —e¢;w with 7;
homologous to P—D; for some real effective divisor D;). By Proposition 5,
0< (i+€w) - o=—Dg) - p+ew-p, 50 p-Dyy \, 0.

If (w- D))? — Dgy - Dy = ||D@iyll? is not bounded independent of
i, a subsequence can be found with || D(;;)|| — co. The cohomology classes
D)/ I Ds;) || can be assumed to converge to some D € H]é’l(X ) of norm
1, with ¢ - D = 0; hence D - D < 0 by Proposition 5 since D is non-zero in
H?(X,R). But since (P — D(;;y + €;;w) - (P — D) + €;,w) > 0, it follows
that D - D > 0, a contradiction. Therefore {||D; ||} is bounded, and by
passing to a subsequence it can be assumed that D;) converges to some
DwithD-D<0,w-D >0and ¢-D = 0. By Proposition 5 again, the
inequality (P — D) - (P — D) > 0 and identity ¢ - (P — D) = 0 now imply
P =D in H?(X,R).

Recall now that the real divisor D(;) is of the form D;) = > Vi Dy

where D(;y; is the j-th irreducible 1-dimensional component (])f the ¢;-
sublevel set of v(P,—), with v;; the Lelong number of P at the generic
point of D(;);. As ¢; tends to 0, corresponding constants c; can also be
assumed to converge monotonically to 0, so D(;y C Dy; for ¢ < j and the
constants v; appearing in D(;) also appear as the coefficients in Dy;y. Since
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@+ E > 0 for every effective divisor E, it follows ¢ - D(;) < - D(; fori < j
with equality iff D) = Dj).

Since ¢ - D = 0, it therefore follows that D(;) is homologous to 0 for
every i, as is the limit D. Therefore P = 0 in H?(X,R) implyingw-P =0, a
contradiction. It therefore follows that ¢ is homologous to a positive (1,1)-
form modulo the image of 8 + 8, so from Theorem 12 it follows that the
form is actually homologous to a closed positive (1, 1)-form. a

Theorem 14 thus yields the following real version of the classical Nakai
criterion, and indeed gives an independent proof of that result:

COROLLARY 15. — A class 0 € Hlé’l(X ) can be represented by a
smooth positive (1,1)-form iff 6 -0 > 0, w-o > 0 and ¢ - D > 0 for every
effective divisor D C X. O

Remarks. — A canonical choice for the representative of ¢ is given
by a smooth closed (1,1)-form p with [p] = o and with p A p = cw?, where
c=0-0/ f X w?. For if py is some positive representative of o, the complex
Monge-Ampere equation (pg + i09g)? = cw? can be solved by following
Yau’s proof in [Y], which is an equation of precisely this kind.

More generally, the techniques for solving the Monge-Ampeére equa-
tion (pg +100g)? = e*p§ where [, e*p} = [y p§ for g are easily adapted to
the case when pq is 09-closed and positive. Considerable effort was put into
attempting to solve the equation ((1 — t)w + t& + 100¢g;)? = csw? (for the
appropriate constant ¢;) where ¢ € [0, 1] but the requisite a priori estimates
on the solution g; eluded the author. It would be interesting to be able to
find a direct analytical proof of Theorem 12.

Hitherto, the full strength of Demailly’s results have not be used
in that they apply to almost positive closed (1,1)-currents (i.e., positive
modulo the addition of smooth forms), not just positive currents. Using
this fact, the following strengthening of Theorem 14 is obtained:

THEOREM 16. — Suppose b1(X) is even and w € A]}K’I(X) is 00-
closed and positive. If ¢ € Ag'(X) is 80-closed and satisfies [y ¢* > 0,
fX wA @ >0 and fD ¢ > 0 for every irreducible divisor D C X, then ¢ is
homologous to a smooth 00-closed positive (1,1)-form modulo the image
of 00.

Proof. — If dp = 0, the result follows from Theorem 14 and
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Lemma 10, so assume dp # 0.

Let u, up € A%'(X) be such that @ = w + Oup + Oty and $ =
@ + Ou + O0u are both d-closed; by Theorem 12 it can be assumed that &
is positive. Since [, @* = [y ¢ +2||0u||? > 0 and [, & = [, > 0 for
every effective divisor D C X and || x PAw= S x PAw >0, it follows from
Theorem 14 that u can be chosen so that ¢ is positive; this is henceforth
assumed.

For tg = 1 — \/1 — [x 9%/ [x #* the form ¢ := ¢ — to@ satisfies
Jx¥?* =0and [, A9 > 0 so by the same arguments as those leading
to Theorem 11 there is a sequence of smooth functions g, and positive
(1,1)-forms p,, such that ||v) +i08g, — pn|| — 0, with g,, converging weakly
in L‘li/ 8N L? and strongly in L9 for some ¢ € (1,2) to a function g and
with p, converging in the sense of currents to some positive (1, 1)-current
p € AV ® L(X). The current P := i00g = p—1) is then closed and almost
positive with P > —1).

Arguing exactly as in the proof of Theorem 11, for some constant K
depending on the curvature of ¢, given ¢ > 0 with g — cK > 0 there is an
R-linear combination D, of effective divisors on X with positive coefficients
and a family of smooth functions g. . with 7:5690,6 —D. > —p—(cK+6)¢p
such that 6 \, 0 as € \, 0; (as before D, is here identified with a
representative smooth closed (1, 1)-form).

Since
/ (W + i80ge. — Do) = Do - Do — 2(1 — to)De -
X
D, _ )
= Dl =255 6 (4= De+ (cK +6)9)
+2(cK +6.)

is converging to a non-negative number as ¢, € — 0, it follows exactly as
in the proof of Theorem 12 that (representative (1,1) forms for) D, must
be converging to 0 in C°(X). Consequently the inequality ¢ + i089g. . >
(to — cK — 6)¢ + D, implies ¢ + i09g. . is positive for ¢, € sufficiently
small. O
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