# ANNALES DE L'INSTITUT FOURIER

Sous-espaces biinvariants pour certains shifts pondérés
Annales de l'Institut Fourier, Volume 48 (1998) no. 5, pp. 1543-1558.

We study the biinvariant subspaces for the usual shift on the weighted spaces

 ${L}_{\omega }^{2}=\left\{f\in {L}^{2}\left(𝕋\right):\parallel f{\parallel }_{\omega }={\left(\sum _{n\in ℤ}|f\left(n\right)|{\omega }^{2}\left(n\right)\right)}^{1/2}<+\infty \right\},$

where $\omega \left(n\right)=\left(1+n{\right)}^{p},n\ge 0$ and $\frac{\omega \left(n\right)}{\left(1+|n|{\right)}^{p}}\stackrel{\to }{\phantom{\rule{0.0pt}{0ex}}n\to -\infty }+\infty$ for some integer $p\ge 1$. We show that the analytic part of all biinvariant subspaces is spectral if ${\sum }_{n\ge 2}\frac{1}{nlog\omega \left(-n\right)}$ diverges, but that this does not hold when ${\sum }_{n\ge 2}\frac{1}{nlog\omega \left(-n\right)}$ converges.

Nous étudions les sous-espaces biinvariants du shift usuel sur les espaces à poids

 ${L}_{\omega }^{2}=\left\{f\in {L}^{2}\left(𝕋\right):\parallel f{\parallel }_{\omega }={\left(\sum _{n\in ℤ}|f\left(n\right)|{\omega }^{2}\left(n\right)\right)}^{1/2}<+\infty \right\},$

$\omega \left(n\right)=\left(1+n{\right)}^{p},n\ge 0$ et $\frac{\omega \left(n\right)}{\left(1+|n|{\right)}^{p}}\stackrel{\to }{\phantom{\rule{0.0pt}{0ex}}n\to -\infty }+\infty$, pour un certain entier $p\ge 1$. Nous montrons que la trace analytique de tout sous-espace biinvariant est de type spectral, lorsque ${\sum }_{n\ge 2}\frac{1}{nlog\omega \left(-n\right)}$ diverge, mais que ceci n’est plus valable lorsque ${\sum }_{n\ge 2}\frac{1}{nlog\omega \left(-n\right)}$ converge.

@article{AIF_1998__48_5_1543_0,
author = {El-Fallah, O. and Kellay, Karim},
title = {Sous-espaces biinvariants pour certains shifts pond\'er\'es},
journal = {Annales de l'Institut Fourier},
pages = {1543--1558},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {48},
number = {5},
year = {1998},
doi = {10.5802/aif.1666},
zbl = {0919.47020},
mrnumber = {99k:47012},
language = {fr},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1666/}
}
TY  - JOUR
AU  - El-Fallah, O.
AU  - Kellay, Karim
TI  - Sous-espaces biinvariants pour certains shifts pondérés
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 1543
EP  - 1558
VL  - 48
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1666/
DO  - 10.5802/aif.1666
LA  - fr
ID  - AIF_1998__48_5_1543_0
ER  - 
%0 Journal Article
%A El-Fallah, O.
%A Kellay, Karim
%T Sous-espaces biinvariants pour certains shifts pondérés
%J Annales de l'Institut Fourier
%D 1998
%P 1543-1558
%V 48
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1666/
%R 10.5802/aif.1666
%G fr
%F AIF_1998__48_5_1543_0
El-Fallah, O.; Kellay, Karim. Sous-espaces biinvariants pour certains shifts pondérés. Annales de l'Institut Fourier, Volume 48 (1998) no. 5, pp. 1543-1558. doi : 10.5802/aif.1666. https://aif.centre-mersenne.org/articles/10.5802/aif.1666/

[A1] A. Atzmon, Operators which are annihilated by analytic functions and invariant subspaces, Acta Math., 144 (1980), 27-63. | MR | Zbl

[A2] A. Atzmon, On the existence of hyperinvariants subspaces, J. Op. Theory, 11 (1984), 3-40. | MR | Zbl

[B] V.I. Burenkov, On the approximation of functions in Sobolev spaces by functions of compact support in an arbitrary open set, Soviet Math. Dokl., 13 (1972), 60-64. | MR | Zbl

[C] L. Carleson, Sets of uniqueness of functions regular in the unit circle, Acta Math., 87 (1952), 325-345. | MR | Zbl

[D] P.L. Duren, Theory of Hp Spaces, Pure and Applied Math., Academic Press, New York-London, 1970. | MR | Zbl

[Dy] E.M. Dynkin, Free interpolation set for Hölder classes, Mat. Sbornik, 109 (1979), 107-128. | Zbl

[EZR] J. Esterle, M. Zarrabi and M. Rajoelina, On contractions with spectrum contained in the Cantor set, Math. Proc. Camb. Phil. Soc., 177 (1995), 339-343. | MR | Zbl

[E1] J. Esterle, Distributions on Kronecker sets, strong forms of uniqueness, and closed ideals of A+, J. für reine ang. Math., 450 (1994), 43-82. | Zbl

[E2] J. Esterle, Uniqueness, strong forms of uniqueness and negative powers of contractions, Banach Center Publications, 30 (1994), 1-19.

[E3] J. Esterle, Closed ideals in certain Beurling algebras and synthesis of hyperdistributions, Studia Math., 120 (1996), 113-153. | MR | Zbl

[E4] J. Esterle, Singular inner functions and biinvariant subspaces for dissymetric weighted shifts, J. Func. Analysis, 144 (1997), 64-104. | MR | Zbl

[K] J.P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Maths, 50, Berlin-Heidelberg-New York, Springer, 1970. | MR | Zbl

[Ke] K. Kellay, Contractions et hyperdistributions à spectre de Carleson, J. London. Math. Soc., to appear. | Zbl

[Kh] L. Khanin, Spectral synthesis of ideals in algebras of functions having generalized derivatives, Russian Math. Surveys, 39 (1984), 167-168. | MR | Zbl

[Ko1] B.I. Korenblum, Invariant subspace of the shift operator in weighted Hilbert space, Mat. Sbornik, 89 (1972), 112-138. | Zbl

[Ko2] B.I. Korenblum, Invariant subspaces for a shift operator in some weighted Hilbert sequence spaces, Soviet Math. Dokl., 13 (1972), 272-275. | MR | Zbl

[Ko3] B.I. Korenblum, Functions holomorphic in a disc and smooth in its closure, Soviet Math. Dokl., 12 (1971), 1312-1315. | Zbl

[N] N.K. Nikolskii, Lectures on the shift operator IV, J. Soviet Math., 16 (1981), 1118-1139. | Zbl

[S] F.A. Shamoyan, Closed ideals in algebras of functions analytic in the disc and smooth up to its boundary, Mat. Sbornik, 79 (1994), 425-445. | MR | Zbl

[TW] B.A. Taylor and D.L. Williams, Ideals in rings of analytic functions with smooth boundary values, Can. J. Math., 22 (1970), 1266-1283. | MR | Zbl

[Z] M. Zarrabi, Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle, Ann. Inst. Fourier, 43-1 (1993), 251-263. | Numdam | MR | Zbl

Cited by Sources: