# ANNALES DE L'INSTITUT FOURIER

Recovering the total singularity of a conormal potential from backscattering data
Annales de l'Institut Fourier, Volume 48 (1998) no. 5, pp. 1513-1532.

The problem of recovering the singularities of a potential from backscattering data is studied. Let $\Omega$ be a smooth precompact domain in ${ℝ}^{n}$ which is convex (or normally accessible). Suppose ${V}_{i}=v+{w}_{i}$ with $v\in {C}_{c}^{\infty }\left({ℝ}^{n}\right)$ and ${w}_{i}$ conormal to the boundary of $\Omega$ and supported inside $\overline{\Omega }$ then if the backscattering data of ${V}_{1}$ and ${V}_{2}$ are equal up to smoothing, we show that ${w}_{1}-{w}_{2}$ is smooth.

On étudie le problème de la restitution de singularités d’un potentiel de la rétrodiffusion. Soit $\Omega$ un domaine précompact, convexe et ${C}^{\infty }$. Soit ${V}_{i}=v+{w}_{i}$ avec $v\in {C}_{c}^{\infty }\left({ℝ}^{n}\right)$ et ${w}_{i}$ conormale au bord de $\Omega$ et avec support dans $\overline{\Omega }$; si les données de la rétrodiffusion de ${V}_{1}$ et ${V}_{2}$ sont égaux, alors ${V}_{1}-{V}_{2}\in {C}^{\infty }$.

@article{AIF_1998__48_5_1513_0,
author = {Joshi, Mark S.},
title = {Recovering the total singularity of a conormal potential from backscattering data},
journal = {Annales de l'Institut Fourier},
pages = {1513--1532},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {48},
number = {5},
year = {1998},
doi = {10.5802/aif.1664},
zbl = {0918.35140},
mrnumber = {2000b:35272},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1664/}
}
TY  - JOUR
AU  - Joshi, Mark S.
TI  - Recovering the total singularity of a conormal potential from backscattering data
JO  - Annales de l'Institut Fourier
PY  - 1998
SP  - 1513
EP  - 1532
VL  - 48
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1664/
UR  - https://zbmath.org/?q=an%3A0918.35140
UR  - https://www.ams.org/mathscinet-getitem?mr=2000b:35272
UR  - https://doi.org/10.5802/aif.1664
DO  - 10.5802/aif.1664
LA  - en
ID  - AIF_1998__48_5_1513_0
ER  - 
%0 Journal Article
%A Joshi, Mark S.
%T Recovering the total singularity of a conormal potential from backscattering data
%J Annales de l'Institut Fourier
%D 1998
%P 1513-1532
%V 48
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.1664
%R 10.5802/aif.1664
%G en
%F AIF_1998__48_5_1513_0
Joshi, Mark S. Recovering the total singularity of a conormal potential from backscattering data. Annales de l'Institut Fourier, Volume 48 (1998) no. 5, pp. 1513-1532. doi : 10.5802/aif.1664. https://aif.centre-mersenne.org/articles/10.5802/aif.1664/

[1] J.J. Duistermaat and L. Hörmander, Fourier Integral Operators II, Acta Mathematicae, 128 (1972), 183-269. | MR | Zbl

[2] A. Greenleaf and G. Uhlmann, Recovering Singularities of a Potential from Singularities of Scattering Data, Commun. Math. Phys., 157 (1993), 549-572. | MR | Zbl

[3] A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232. | MR | Zbl

[4] V. Guillemin, G. Uhlmann, Oscillatory integrals with Singular Symbols, Duke Math. J., 48 (1981), 251-267. | MR | Zbl

[5] L. Hörmander, Fourier Integral Operators I, Acta Mathematicae, 127 (1971), 79-183. | MR | Zbl

[6] L. Hörmander, Analysis of Linear Partial Differential Operators, Vol. 1 to 4, Springer Verlag, Berlin, 1985.

[7] M.S. Joshi, An Intrinsic Characterisation of Paired Lagrangian Distributions, Proc. Amer. Math. Soc., 125 (1997), N° 5, 1537-1543. | MR | Zbl

[8] M.S. Joshi, A Precise Calculus of Paired Lagrangian Distributions, M.I.T. thesis, 1994.

[9] M.S. Joshi, A Symbolic Contruction of the Forward Fundamental Solution of the Wave Operator, preprint. | Zbl

[10] M.S. Joshi and A. Sa Barreto, Recovering Asymptotics of Short Range Potentials, to appear in Commun. in Math. Phys. | Zbl

[11] P. Lax, R. Phillips, Scattering Theory, Revised Edition. New York, London: Academic Press, 1989. | MR | Zbl

[12] R.B. Melrose, Differential Analysis on Manifolds with Corners, forthcoming.

[13] R.B. Melrose, Marked Lagrangian Distributions, manuscript.

[14] R.B. Melrose and G. Uhlmann, Lagrangian Intersection and the Cauchy Problem, Comm. on Pure and Applied Math., 32 (1979), 482-512. | MR | Zbl

[15] R. Philips, Scattering Theory for the Wave Equation with Short Range Potential, Indiana Univ. Math. Journal, 31 (1982), 609-639. | Zbl

Cited by Sources: