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RECOVERING THE TOTAL SINGULARITY
OF A CONORMAL POTENTIAL

FROM BACKSCATTERING DATA

by Mark S. JOSHI

1. Introduction.

In this paper, we show that in certain cases the total singularity
of a potential with a singularity conormal to a hypersurface bounding a
smooth convex domain is determined by backscattering data. This extends
previous work of Greenleafand Uhlmann, [2], who showed that the location
of a conormal singularity and its principal symbol could be recovered from
backscattering data for any submanifold. Our approach is to refine the
proof of Greenleaf and Uhlmann by using the more exact calculus of paired
Lagrangian distributions developed in [8] and [9] to compute the effects of
lower order terms by regarding them as a perturbation - cf. [10].

Greenleaf and Uhlmann proceeded by constructing an approximate
solution to

(1.1) (D+g)n(^)=0 onHr+1

(1.2) u{x, t) = 6(t - x.u;), t « 0,

by using an iterative scheme UQ = 6(t — x.uj\ uj = —U]~l(q(x)uj--t).
In fact, their proof only required UQ^U\\ we will however use the entire
iterative scheme - how far we go depends the strength of the perturbation

Key words: Scattering theory - Conormal - Lagrangian.
Math. classification: 35R30 - 35P25.
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considered. The scattering matrix and the backscattering matrix can then
be obtained by applying elliptic Fourier integral operators to u. A part
of their proof was that this implies that away from a bad set that
the scattering kernel, a(s,0, c^), is microlocally a Lagrangian distribution
associated to a Lagrangian submanifold - A- - the reflected Lagrangian,
in the area which occurs in backscattering. They showed that the principal
symbol on A- restricted to 0 = —uj determines the principal symbol of q.
Here, we show that for q\, q^ of a particular form, the principal symbol of the
difference of the scattering matrices on 0 = —uj determines the principal
symbol of the difference of the potentials. This in particular means that
if the difference of the backscattering kernels is smooth then wi — w^ is
smooth.

We need a condition on the potential to ensure that the scattering
kernel is defined, see [15] or [2]. Let

r^ ^3,4
^n - \ 2^ ^5.

The scattering kernel is then defined for potentials conormal to a hyper-
surface with Lagrangian orders less than

7^ - 1/2 + n/4.
It may be possible to make the Lax-Phillips theory work for these potentials
with weaker assumptions on their regularity as the singularities are of a very
precise type, in which case our arguments would continue to work but we
leave this to the interested reader.

THEOREM 1.1. — Let Q C R77' be a normally accessible, pro-
compact domain with smooth boundary, <9f^, in W1 with n > 3. Suppose
q, = v + W i , i = 1,2 with v e ^(R71), w, e J^(R71, A^n)),
supp(w^) C ̂  with

p.+1/2- n/4 < ̂ n

and let /3i{s,(jj) be the associated back-scattering kernels then if ̂ i(5,cj) —
/3-2(s,^) is smooth then w\ — w^ € (7°°.

We note that as 7n is negative the potential is always representable
by an L^ function with p > 1. For most of the arguments in this paper,
we only need the potential to be of order less than n/4 — 1/2 but the extra
smoothness is required to ensure the scattering theory for the potential is
defined. We recall that a normally accessible domain is a domain such that
the outer normal line at each point of the boundary does not reintersect
the domain. This is clearly weaker than weak convexity.
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We note an alternative formulation of our hypotheses avoiding micro-
local analysis. Let y be a function which is zero on O^i with non-zero
derivative there and positive on f2. Let \ be the function which is one
on ^ and zero off ^2. Our condition on wi is equivalent to saying that

^i = yaX9i

with gi a smooth function and a > — 1 — ^ n ' Theorem 1.1 says that if
the difference of the backscattering matrices is smooth then g\, g^ have the
same Taylor series at every point of 9^1.

In Section 2, we review the theory of paired Lagrangian distributions.
In Section 3, we prove estimates for products of Lagrangian and paired
Lagrangian distributions. In Section 4, we examine the mapping properties
of paired Lagrangian distributions under the forward fundamental solution
of the wave operator. We then put all this together in Section 5 to prove
the main result. We refer the reader to [2] for discussion of other related
papers.

2. Paired Lagrangian distributions.

In this section, we review the theory of paired Lagrangian distribu-
tions. Recall that a Lagrangian distribution is a distribution that lies in
a fixed Sobolev (or Besov) class under repeated application of first order
pseudo-differential operators which are characteristic on a given conic La-
grangian submanifold. Paired Lagrangian distributions are similarly associ-
ated to a cleanly intersecting pair of submanifolds. Paired Lagrangian dis-
tributions were introduced by Melrose and Uhlmann in [14] to give a sym-
bolic construction of parametrices of operators of real principal type. How-
ever that calculus is too narrow for our purposes. Greenleaf and Uhlmann
worked in a much wider calculus consisting of distributions of fixed Sobolev
order under repeated application of first order pseudo-differential operators
which are characteristic on both Lagrangian submanifolds. (See [3], [4].)
This is a very wide class as it contains distributions which have wavefront
contained in the intersection of the two submanifolds and so behaviour off
the intersection is not controlled by behaviour at the intersection. Here,
we work with this class as well as with two narrower classes. The first nar-
rower class is the calculus developed in [8] and [9] which is general enough
to contain most of the distributions we are studying, whilst being narrow
enough to retain tight control of them. The second is a compromise class
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which is polyhomogeneous on one of the Lagrangian submanifolds up to
the intersection but not both. There are many different order conventions
for paired Lagrangian distributions; we define ours so that microlocally
away from the intersection the order will be the same as that as a La-
grangian distribution in [6] which is consistent with the order conventions
in [8] and [9]. (This is not consistent with [2]- we shall discuss the relation-
ship below.) For brevity, we shall assume that all Lagrangian submanifolds
mentioned in the following are embedded, conic, Lagrangian submanifolds
of the cotangent bundle of W (or a smooth manifold X of dimension r).

We recall Hormander's constructive definition of a Lagrangian distri-
bution that u is Lagrangian with respect to A of order m if locally u is of
the form/

f e^^a^x.e^de,

where 0 is a generating function for A and a is a symbol of order
m — N / 2 -(- r/4 where N is the number of 0 variables. A Fourier integral
operator is an operator whose Schwartz kernel is a Lagrangian distribution.

The marked Lagrangian distributions of Melrose are a variant of these
distributions which are allowed more singular behaviour on an isotropic
submanifold. These are defined with reference to a model,

Ao = N^x = 0), S = N^x = 0) H {^ / = 0}
for some splitting of the coordinates x == ( x ' , x " ) and with ^ the dual coor-
dinates. Any Lagrangian submanifold containing an isotropic submanifold
can be reduced to this form by a homogeneous symplectomorphism.

DEFINITION 2.1. — The distribution u is in J^(Ao, S) ifu can be
written up to smooth terms as

fe^aW

where
/ i^ \ 2s

\^otn(f:\\ < C /^\'m~\otff\/\^//\l/2 4- \^/\\~\a/\ I ____XJ/____ \|^a(^|S<-^; W I + 1 ^ 1 ; \ / i ^ i i / 2 _ p \^\\j '

In general, if' E is a submanifold of the Lagrangian A, we say u € ^^(A, E)
ifu is in 7^ (A) microlocally away from E and if for any zeroth order Fourier
integral operator, F, associated to the graph of a local symplectomorphism
which maps (A, E) to (Ao, S), we have Fu € I^^o, S.)

These distributions map in a natural way under pseudo-differential
operators.
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PROPOSITION 2.1. — I f P i s a pseudo-differential operator of order
m then P induces a map

P:I^E)-.I^l(^E).

For further details see [13]. An important use of marked Lagrangian
distributions is that they can be used to decompose paired Lagrangian
distributions. We take such a decomposition as our definition.

DEFINITION 2.2. — If (Ao.Ai) are a cleanly intersecting pair of
Lagrangian submani folds. We define J^^Ao.Ai) to be equal to

m—p+d/2 p—m+d/2

I ^ a 2 ( A o . A o H A i ) + J ^ o 2 ( A i . A o H A i )

where d in the codimension of the intersection in each of the two.

The mapping properties of this class under pseudo-differential opera-
tors is immediate from the marked case. We note that away from Ao H Ai,
these are just ordinary Lagrangian distributions. In the special case that
Aj = N*(Xj) with Xj submanifolds, XQ C Xi, of codimension d\ +^2 and
^2, then there is an alternative definition. Away from the intersection, the
distributions are Lagrangian of the correct orders and in local coordinates
( x ^ x " ^ ' " ) such that

X^{xll=^xm=Q}^X^={xllt=Q}^

the distribution near the intersection can be written as

f e^^+^-^aOr'^ D^W,

where a obeys symbol estimates

î ,Df,,̂ ,,,a(̂ ,r,r)i <. c^^'^'r-^^Y-^
which are uniform for x ' in compact sets. Here

, di + d2 -
IJL 4- p. + —„— = m + r/4,

A^Y-^^.

We note that Greenleaf and Uhlmann used /^, // as their orders when the
Lagrangian submanifolds were conormal bundles.

In order to define the concept of a poly homogeneous, paired, La-
grangian distribution, we need the concept of a radial operator. We recall
from [7],
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DEFINITION 2.3. — A radial operator for a Lagrangian submanifold
A is a properly supported, classical pseudo-differential operator, R, of first
order such that

1. the principal symbol ofR vanishes on A,

2. the subprincipal symbol ofR equals n/4 on A,

3. the bicharacteristic field of R, Hp, on A is equal to the radial
vector field multiplied by i~1.

THEOREM 2.1. — An element u ofJ^(A) is polyhomogeneous of
order ^ if and only for some (and hence any) radial operator R associated
to A,

/N-l \

(2.1) M^ (R + ̂  - j) \u € J^-^A), for all N.
V=° /

We make the convention that
-in(^+/.- j)=id.
j=0

DEFINITION 2.4. — The pair of operators, {RQ.R-^) is said to be
radial for the pair of Lagrangian submani folds (Ao,Ai), if Rj is radial for
Aj and is characteristic on Ao U Ai.

We then recall from [9],

DEFINITION 2.5. — If (Ao,Ai) is a cleanly intersecting pair of
Lagrangian submanifolds and (Ro,Ri) is an associated pair of radial
operators then u € T^'^Ao, Ai) if and only if

N-l M-l

]̂ [ (Ro + m - j) \{ (7?i + p - k)u e Im-N1p-M(A^ Ai).
J=0 fc==0

This definition was shown to be independent of the choice of radial
operators there. A full symbol calculus can be developed for this class but
we shall not make use of it here. We recall that

U^cI^iA^A^

We also introduce a new class where polyhomogeneity is required on
only one of the two Lagrangian submanifolds.
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DEFINITION 2.6. — If (Ao,Ai) is a cleanly intersecting pair of
Lagrangian submanifolds and RQ is a radial operator for Ao which is
characteristic on Ai then u e ̂ ^(Ao, Ai) if and only if

N-l

]̂ [ GRo + m - j)u e ̂ -^(Ao, Ai).
j=0

The proof that this class is independent of the choice of RQ is just a
special case of that for the Ip^g classes. It is important to realize that this
class is smaller than the class of paired Lagrangian distributions which are
polyhomogeneous on Ao off Ai.

3. Product estimates.

The most important part of our constructions involve studying the ac-
tion of multiplying a paired Lagrangian distribution by a singular function.
All the cases we need will involve distributions conormal to transverse hy-
persurfaces and their intersections. Since locally, transverse hypersurfaces
can be reduced to the vanishing of coordinate functions, we study a model
problem, let

Xi = {x, = 0},
x^ = {^2 = 0, rbri ^0},
Xs = Xi H X^ = {x^ = 0, x-2 = 0}.

We work in a manifold of dimension r (later in the paper we will take
r = 2n) and take a splitting of coordinates

x = {x^,x^,x").

Suppose w e J^(7v*Xi) and supp(w) c {x^ > 0}. We want to understand
the action of multiplying by w, M^, on ^(^(X^.Tv*^)) and on
J(7V*(Xi),7V*(X3)). We first look at the wider non-polyhomogeneous
classes and then deduce results for the polyhomogeneous ones.

Now w can be written as

f e^^b^x"^^

with b a symbol of order {i = ^ + n/4 - 1/2 with asymptotic expansion
Y,bj{x^,x",^). The support condition on w means that

3

bj^x^^) = (^-iQY-^^^^
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- see [6] Vol. 3, Chap. 18, for a discussion of this. This means that w has
an expansion

E^"1^)^^")
with Cj smooth, in the sense that w can be made arbitrarily smooth by
subtracting a finite number of these terms. Applying the Borel lemma,
this means that w is of the form ^.(x\)f(x) with / a smooth function,
where a = —^ — n/4 — 1/2. So to study mapping properties it is enough
to study multiplication by smooth functions and by ^^.(a:i). Multiplication
by a smooth function is a special case of applying a zeroth order, classical,
pseudo-differential operator so it will leave the paired Lagrangian spaces
invariant. We denote Ma the operation of multiplying by \a^.

We start with the action of Ma on distributions conormal to a
transverse hypersurface.

PROPOSITION 3.1. — For any a, Ma induces a map
UN^W) -. I^-^-^-^^N^X^N*^))

+^T1/2'P(^*?),^?+)).

Proof. — For the non-polyhomogeneous spaces this is Lemma 1.1 of
[2]. We obtain 7V*(X^) because of the support of H (x i).

To see the polyhomogeneity, note that the operators

R i = x ° + l / 2 - r / ^
Qx\

R 2 = x 9 + l / 2 - r / ^0x2
r\ r\

Rs = x^—— + x^—— + 1 - r/4dx\ dx^
are radial for Xi,X2, and X^ respectively. As Ma commutes with R^, the
improvement under application of radial operators on N*(X^) is immediate.

Applying J?i — a — 1 + 1/2 — r/4 to MaU will yield
Qu

Ma+lH+Ma+l^——

Qu
and, of course, —— <E ^(^V*(-^i)). So the order on (7v*(Xi),7V*(X3)) is

CfX~\_
lowered.

To get the improvement under -Rs, just write it as J?i + R^ plus a
constant and then combine the arguments above. D
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PROPOSITION 3.2. — I f a > - l a n d u e /^(^(Xi), TV*^))
with

p - l / 2+r /4+a < 0,

then

Mau € ̂ -^-^^(Xi)^*^)) +J^71+l/2-r/4(7V*(Xl))

if a is not an integer, and

Mau e ̂ -^^-^(^(Xi)^*^)) +J^71+l/2-r/4(7V*(Xl)),

otherwise.

Note that the term I^~ - (7V*(Xi)) comes from multiplying
smooth functions by ^(rci).

Proof. — Up to smooth terms,

u = [ e^^l^x2^b(xff ,^2)^1 ̂ 2

where 6 is such that

Pf,,P^( î,̂ )| ̂  C^i,^-"1^)^2

and
m =^-h 1/2 -r/4,

p = ^ + / ^ / + l — r/4.

Multiplying by x\ is equivalent to differentiating b with respect to ^i so
multiplying by x^ has this mapping property. This means that writing
a = a — k -\- k, we can assume that a is non-positive. The smooth error
yields an element of J^'^^^^^TV^Xi)) as noted above.

Before proceeding to the estimate, we note that as the model is
invariant under changes of coordinates of the form

x-i ̂  .z-i,
0*2 1—^ X\ + 52-2,

it is enough to estimate the convolution in the domain where ^i, the dual
to a;i, is elliptic.

As only behaviour near x\ = 0 is important we can cut off near
it, and so the total symbol of Mo,u is estimated, up to constants, by the
convolution,

fw-^W^.-^Wr].
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The symbol estimates on b imply that this is bounded, up to constants by

W fw-^^-n^^dri.

As 11 < 0, this is thus less than

c^r' y^i-m^w-1^.
We consider first the integral over the domain where |?7| < -|$i|. This

Zi
is less than

w'w I w-°-1^.•'\ri\<^i\
For a < 0, this is bounded by

c^r'w'1
and for a = 0 by

C{^'Wlog((^})

which is what we want.

To estimate in the domain where -|$i| < \r]\ < 2|^i|, we cut use a

smooth cutoff to obtain a term supported in -|^i| ^ \rj\ < 3|^i|, which we
o

then estimate in the same away but interchanging the roles of —a — 1 and
/-A, integrating by parts if necessary to ensure that IJL > —1. (The smooth
cutoff ensures the absence of boundary terms when integrating by parts.)

In the domain, |?7| > 2|^i| we make the change of variables T] = |^i|y/
which yields

c^r' I (^ - ̂ iri^iKi^r'-w.
J|7/|>2

This can be written as

^•>-/(™r(Tr^
The integrand is uniformly integrable provided f^—a—l < 0 that is provided
p — 1/2 + r/4 + a < 0 which was our hypothesis. The derivative estimates
following by applying the derivatives to b and then applying the same
estimate. D

If we make an assumption on the poly homogeneity oiu up to 7V*(Xi),
we get a corresponding result about the polyhomogeneity of Ma,u.



SINGULARITIES FROM BACKSCATTERING 1523

COROLLARY 3.1. — If in addition u <E I^(N^X^),N^X^) then

M^ G I^-^N^X^N^X,)) + ̂ ^-^(A^)).

Proof. — This follows immediately from noting that
r\ r\

Rs = ^— + a— + 1 - r / 4dx\ ox2
is radial for TV*^), and

^i=^+l/2-r/4

is radial for 7V*(Xi), as

(^•-a)M<,=M^.

D

We denote by ^(Ao^i^) elements of J^Ao^Ai) which have
wavefront set disjoint from Aa.

PROPOSITION 3.3. — If m - p - 1/2 < -1 and if a > -1 and
non-integral, then Ma maps

iP^(N^X^)^N^X^^N^X,))

into

^-"(A^)^*^)) + J7'-^-1/2-^1/2-/4^-^^*^!)^*^))

+^-a+l/2-r/4(^?))
and if a is an integer into

^-'-(^(^A^Xs))
^m-p-l/2-a+l/2-r/4-,rn-a-^*^^^*^+^^^-a+l/2-r^^

Proof. — We can assume u is supported near x == 0 as the mapping
property on elements of ^(./V*^)) supported away from x^ = 0 is trivial.

So, if
u € ^m(^*(X2+),7V*(X3),7V*(Xl))

then up to smooth terms u can be written

fe^M^x"^ 6)^1^2
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and b a generalized symbol, precisely

\D^b(x", ̂ i,^)| ̂  C î,^-02 '̂-01

where
1 r

P^+2-4 -
m = /^+//+ 1 - ̂ .

We can also take b supported in the set where \^\ is elliptic.

Multiplying u by x^ with k a positive integer is equivalent to differ-
entiating the symbol b with respect to ^i k times. So we can immediately
reduce to the case when — l < a < 0 .

By hypothesis, we have // < 0. If we then estimate the convolution
as in Proposition 3.2, we obtain that if c is the partial Fourier transform
of MyU that

^t^'^^x^ < C^-^^-^

for a < 0. Cutting up into domains according to the ellipticity of ^i, ̂  the
result follows.

For a = 0 we gain a log term, as before, to give the e error. D

COROLLARY 3.2. — I f m - p - l / 2 < - l and if a > -1 and non-
integral, then Ma maps

^(^*(^3)^*(X2),7v*(Xi))
into

%-a(^?),^*?+))+J^-l/2-a+l/2-r/4•m-a(A^*(X3),Ar*(Xl))

+U-o+l/2-r/4(iv•(xl))'
and if a is an integer into

^-'-(A^)^*^))
^m-p-l/2-a+l/2-r/4-,m-a-^*^^^*^+^^^-a+l/2-^^^

Proof. — This follows by commuting the radial operator R^ with Ma
and noting that the condition m-p- 1/2 < -1 is preserved upon lowering
m. Q

Another case we need to study is applying Ma to the class

W^W^W)).
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In this case, the wavefront set of the product will be contained in N*(X^)U
A^*(Xi). We want to show that near N^X^) H N^Xs) MaU is in
Iphg{N^(X^)) - it is not obvious that the distribution is even Lagrangian
there.

PROPOSITION 3.4. — Let u € ^(^(Xs),^*^)), m - p -
1/2 < —1 and micro-supported near N * ( X ^ ) then

MaU G ̂ -^-^-^-"(ir^A^Xa)) + J^1,-0^2-'74

(^W).

Proof. — Away from N*(X-^) n N*(Xs) the proof is as in the case
for N*(X}). Now as u G I^(N*(X3),N*(X^)), we can decompose
u = ui + us with

«2 = /'e^^a^i^iN^i^y')^
where <^»(s) is smooth and identically one in s > —1/2 and identically zero
in s < —1. This gives

ui e J^^(AT*(X2-),Ar*(X2-)nAr*(X3)),
p—m-t-^

^2 e Ca""^"^*^)^*^-) n7V*(X3)),
- see [9]. We have that MaU = MaU^. Now u-z can be written

I e^^^a^^^d^d^

with a of type (1/2,0) distribution conormal to X^ of order ———,———.
So arguing as in the proof of Proposition 3.2, we deduce that MaU is

of type (1/2,0) of order ——————— — a with respect to N*(X^) near
7V*(X2)n7v*(X3).

But, we also know that Ma,u will have an expansion in homogeneous
N-l

terms near the intersection as commuting Y[ (R+rn— s — j) through Ma
j=0

we have that
^__1 m^/2 ,

Y[{R+m-s-j)MaUeI^^2 (A^s)),
j-=0

micro-locally. The proof that this implies polyhomogeneity of order m is
the same as that in [7] and the result follows. D
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4. Action of parametrices.

We will need to study the action of applying the fundamental solution
of the wave operator to various classes of paired Lagrangian distributions.
Following Greenleaf and Uhlmann, we prove the requisite results for general
operators of real principal type as this is no harder. We first recall the action
of pseudo-differential operators as this allows us to reduce to first order and
will be needed in any case.

PROPOSITION 4.1. — Let (Ao,Ai) be a cleanly intersecting pair
of Lagrangian submani folds and let P be a properly supported, classical,
elliptic pseudo-differential operator of order w. Then P induces maps

^(Ao.Ai^^-^-^Ao.Ai),
%p(Ao-Al)-^7'p-w(Ao,Al),

J 'm,p / A * \ rm—w.p—w/A * \
pphg^O^ A!) -^ Ipphg (^ Ai).

Proof. — The first two maps are discussed in [9], [13]. To see the
third, note that if Q is a parametrix for P and R is radial for Ao then
QRP—w is radial for Ao. The result then follows by commuting P through
the radial operators. (The same argument would also work for the second
case.) Q

PROPOSITION 4.2. — Suppose P is an operator of real principal
type of order m and Q is a forward parametrix for P. IfAo is a Lagrangian
submani fold and Ai is the flow-out ofAo H char(P) then provided the pair
(Ao,Ai) is clean, we have

Q : J^(Ao,Ai) ̂  J^^-^Ao.Ai),
Q : J^(Ao,Ai) -. I^^-^A^A^

Q •' ^(Ao,Ai) -. V/^-^A^A^

Q '' ̂ (^o) - ̂ T^Ai^Ao).

Proof. — The first mapping is part of Proposition 2.2 in [2]. To see
the others, we first apply an elliptic operator of order 1 -m to reduce to the
case where m = 1. As in [I], [2], [9], one can then conjugate by zeroth order,
elliptic Fourier integral operators to reduce the operator P micro-locally to

^-, Ao to N^x" = 0), and Ai to N^x" = 0,^ = O,.TI > 0).



SINGULARITIES FROM BACKSCATTERING 1527

In this case, the operator Q has kernel H(x\—y\}6{x'z^x"}. Computing
Q r\ r\

the commutator of Q with x\—— and x\—— + ^2"^—? w^ see that Q
OX i (73; i <±C2

commutes with the radial operators of Ao, Ai up to a shift in index of one.
The result then follows in the remaining cases by commuting Q through
the radial operators and applying the estimate from the first case. D

5. Recovering the total singularity.

In this section, we use the calculi developed in previous sections to
prove Theorem 1.1. We proceed by taking two potentials 91,92 o1 the form
v -h Wj with Wj polyhomogeneous conormal to the boundary of the domain
^ and supported inside f2. We know from [2] that the principal symbols of
wi and W2 must be the same if the backscattering matrices are equal up
to smoothing. What we shall show is that if wj C J^(A^*(0^)),

wi-w2eJ^(^*(^))
and the principal symbol of the difference of the backscattering matrices is
zero then

wi - w2 e ̂ -/-Wan)).
The main theorem will then follow by induction.

In any local coordinates such that f2 = {x\ >, 0}, Wj is of the form
H{x\)x^gj{x) with gj smooth and wi — W2 is of the form H(x\)xa^N h{x},
h smooth. We have that a = —a — 1/2 — n/4 > —1.

We define the various submanifolds which arise both in our proof and
in [2]. Let

5i = {(x,t,uj) e ar x R x s'71-11 x e <9^},
S+ = {{x, t, uj) C IT x R x 5'71-1 1 1 = x.uj},
S-2 =6'+n6i.

We also let A_ be the flow-out in forward time of the intersection of the
characteristic variety of D with TV* (62) with respect to D - this was
shown to be the conormal bundle of a smooth hypersurface, S- away
from a degenerate set, L. The set S- expresses the set where singularities,
which have come straight in, bounce straight back off 5i and it is these
singularities with which we are concerned. The degenerate set L being the
places where the wave is tangential to 5i. In our case, the degenerate set L
splits 5'_ into a number of components which are classified by how many
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times the wave has passed into and out of f2 before bouncing off 9fl. We
will concern ourselves purely with the component where the wave bounces
before passing across ^2. In particular, we shall work away from the set
where the wave reaches 9^1 after passing over and out of ^2. (This could
not happen if we assumed the domain was convex rather than normally
accessible.) We denote the subset of S- thus obtained as S'_. Our condition
of normal accessibility means that the wave can always come in straight
along the normal to 9^1 and bounce back without crossing f2 - so the set
we shall need in backscattering will be S'_.

Greenleaf and Uhlmann let UQ = 6(t — x.uj)^ u\ = —D"-l(^^o) and
showed that, away from the bad set L, u\ was paired Lagrangian with
respect to N"{S^ and the disjoint spaces ^*(S'l),7v*(6'+),7V*(5f-.) They
also showed that U—UQ—U^ was lower order on N*\S-) which means that
the principal symbol of u on TV* (6'-) is equal to that of ui.

Let u^ denote the solution of
(5.1) (D + q^^x.t) = 0 on IT14-1

(5.2) u^ix.t) =6(t-x.^), t«0.
We also let u^ = 6(t - x.uj), and u^ = -D-1^-^). These being
the iterative schemes for each potential which provide successively better
approximations to u^\ Our approach is to show that the principal symbol
of ^(1) - ̂ (2) on 7V*(5'_) is equal to that of u^ - u^. Note that the first
term in the analogous iteration for the potential associated to q\ — q^ is
equal to u\ — u\ .

LEMMA 5.1. — Away from L, and close to N*(Sf_), the distribution
u'^ is in the class
Jp^(7V*(^)^*(52)) + ̂ ,(^*(^l)^*(^)) + W^*(^)^*(^2))

and the Lagrangian orders off 7V*(5i) converge to —oo as I tends to oo.

Proof. — Fix j and let ui = u\ and q = qj. Away from the set L,
the geometry is that A- is the conormal bundle of the hypersurface S-.
The hypersurfaces S\, S-, 5+ are pairwise transverse with intersection £'2
so we can apply the results of Section 3.

Let p = 1/2 - n/2 then UQ 6 ^(A^*(5+)). So by Proposition 3.1,
we have that
W) e J^1/2-"/^-0-1^^),^^))

+^71+l/2-"/2'p-a-l/2(A^*(^)'A^*?))+^,(^)
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(with an extra e error if a is an integer - we will suppress this in the
sequel as it makes no material difference). Note the final term comes from
multiplying UQ by the smooth part of q. We also remark that one could do
better here by using the support of UQ but that this will not help later on
so we do not bother to do so.

We then want to apply D~1, using Proposition 4.2, and the map-
ping properties of paired Lagrangian distributions under elliptic pseudo-
differential operators, the order will decrease by two on the non-characteris-
tic Lagrangian submanifolds and by one on the characteristic submanifold
A^*(5'+); it will also generate the new Lagrangian A- where it is of one
order lower than on N * ( S ^ ) . So we have that

^i ^ ̂ 73+l/2-n/2'p-a-l/2-2(^*(5l),A^*(^))

+^72+l/2-nAP-a-'l/2-2(7v*(5+)-7v*?))
+ ̂ r1^1'^"172"2^*^-)^*^)) + ̂ ((^))-

We now have to repeatedly do this and see that the order decreases. First
note that the final term here can be discarded, as it will just feed back in as
something of one lower order at each stage in the iteration. On applying q
to the sum of spaces, the smooth term will leave them all invariant and the
singular term can be computed by the results of Section 3. But applying
the individual results for each these spaces, one sees that wu\ will be in
the analogous pphg spaces with orders shifted by —a — 1 on j?V*(6'i) and
N * ( S ^ ) . By Proposition 3.4 the term on N * ( S _ ) will be killed - here we are
using the support condition on Wi and the convexity condition on fl.. (There
will also be a new term conormal to 7V*(5'i). However this is irrelevant as
multiplying such an object by Ma will yield something conormal to 5'i
also and the space 7V*(6'i) is invariant under the action of D~1, as this is
equivalent to applying an elliptic pseudo-differential operator.)

We have from Proposition 4.2, that applying D"1 leaves all these
spaces invariant (except for reintroducing N * ( S _ ) ) and reduces the order
by 1 on the characteristic Lagrangians and 2 on the non-characteristic
Lagrangians. So the action of applying U]~lMq will leave the spaces
invariant and always reduce the order by at least 1 + a > 0 off 7V*(5i). The
result now follows inductively. D

N
LEMMA 5.2. — For any N > 1, the principal symbol of ̂  u^ — u ] '

1=0
on 7V*(5'_) is equal to that of u\ — u\ modulo terms of order — I — a
lower.
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Note that it is essential here that q\ — q^ is supported inside f^. Note
that if a > 0 the fact the symbol is determined modulo terms of order
— I — a lower is irrelevant but that for — l < a < 0 this is a real effect.

Proof. — First, we discard the zeroth terms as they are equal. Now
u! ~ u ' ls eclual to

0~l({ql-q2)6{t-x^)).

Thus as above, we obtain

uW-u^ € I^-W-^P——N-^-\N^S,),N*(S,))

+I^N~2+l/2-n/2'p-a-N-l/2-2(N^S^N*W)

+^-^A^-l/2-l'p-a-l/2-2(^(^)'7v*(>52)),
without the additional term in 7p^(7V*(S+)) as we have no smooth error.
So we need to show that u" —uf^ is of order lower than p—a—N—1/2— 1 on
7V*(S'i) for any j bigger than 1. To see this we observe that if q-z is written
as q\ + (92 — qi) and the expression for u'^ is then expanded, we obtain
u- plus a sum of terms of the form

3

^(D-^)^-^),
1=1

where ri is either gi or q^—qi and at least one r\ will be q'2—qi- These terms
will necessarily be of lower order than u^ — u" on N * ( S ' _ ) as applying
q2 — qi reduces order by —a — N and applying n~lMq^ lowers order by
— I — a . The result then follows. D

As the order of the distributions have been shown to go down off
7v*(5i), we can asymptotically sum u^ in

J(7V*(^),7V*(^))+^*(^),7V*(^))+A^*(^+)^*(^2))
to obtain v^\ By construction, (D + qj)v^ is Lagrangian with respect to
7V*(5i) nearSC-. So

(D+g^O/^-^)

is zero in the far past and near S_ is Lagrangian to TV* (61). As the space
of distributions Lagrangian to N*{S\) is an algebra and invariant under
application of D~1, we deduce that near S_, for all k

(l+^M^^-v^)

is Lagrangian to JV*(5i) near S_ (cf. proof of Theorem 3.1 in [2]). As
applying D^Mg. smooths Sobolev order off 7V*(5i), this implies that
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^0)^0) are equal up to smoothing near S'_ off A^*(6'i). Thus u^ will
be paired Lagrangian with respect to (7V*(5'2),7V*(5'_)) and A^*(5'+) off
7V*(5'i) near S_. We also have from Lemma 5.2 that the principal symbol
of u^ - u^ on TV* (6'-) is equal to that of u^ - u^\

Now to pass from u^ to the scattering matrix a^ we subtract
6(1 - x.uj), apply an elliptic Fourier integral, F, associated to the canonical
graph

7V*f 7. /9 — o^ r- T* (1^ ^ qn—1 -rra qn-1 jrpn ^ Tn> < / on—l\-Lv \^'v — Q) <<_ J. ^m^ A 0^ X Ms X 0^ X 1K^ X M^ X 0^ ^

(see [2]) and then restrict via pulling back by the map

p{s,0,uj) = (s+to,0,to^)

for some to large.

The main theorem now follows by a repetition of the arguments of
Greenleaf and Uhlmann, [2], applied to the difference of the scattering
matrices rather than a single one. We sketch the argument but do not give
the details for brevity. The principal symbol of u^ - u^ on 7v*(5C_) is
equal to that of u^ —u^ and this will be proportional to that of gi — g-2-
Applying F will map A^*(5^_) to a Lagrangian A'_ and will change the
principal symbol by a known elliptic factor which is thus irrelevant. We
deduce that after the restriction, the principal symbol on A_, the restricted
Lagrangian, will be proportional to that g^ - g^ and this then means that
the principal symbol of the difference of the backscattering matrices then
determines the principal symbol of g\ - g^ and the result follows.
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