We study compact complex manifolds covered by a domain in -dimensional projective space whose complement is non-empty with -dimensional Hausdorff measure zero. Such manifolds only exist for . They do not belong to the class , so they are neither Kähler nor Moishezon, their Kodaira dimension is , their fundamental groups are generalized Kleinian groups, and they are rationally chain connected. We also consider the two main classes of known 3-dimensional examples: Blanchard manifolds, for which is a line, and the generalized Schottky coverings constructed by Nori. We determine their function fields and describe the surfaces they contain.
Nous étudions les variétés complexes compactes qui possèdent un revêtement qui soit un domaine dans l’espace projectif de dimension dont le complémentaire est un ensemble non vide de mesure de Hausdorff de dimension égale à zéro. De telles variétés n’existent que si . Elles n’appartiennent pas à la classe , et par conséquent elles ne sont ni Kähler ni Moishezon, leur dimension de Kodaira est , leurs groupes fondamentaux sont des groupes de Klein généralisés et elles sont connexes par chaînes rationnelles. Nous considérons aussi les deux classes principales d’exemples connus en dimension 3 : les variétés de Blanchard, pour lesquels est une droite, et les revêtements généralisés de Schottky construits par Nori. Nous déterminons leur corps de fonctions méromorphes et décrivons les surfaces qu’elles contiennent.
@article{AIF_1998__48_1_223_0, author = {L\'arusson, Finnur}, title = {Compact quotients of large domains in complex projective space}, journal = {Annales de l'Institut Fourier}, pages = {223--246}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {48}, number = {1}, year = {1998}, doi = {10.5802/aif.1616}, zbl = {0912.32020}, mrnumber = {99d:32035}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1616/} }
TY - JOUR AU - Lárusson, Finnur TI - Compact quotients of large domains in complex projective space JO - Annales de l'Institut Fourier PY - 1998 SP - 223 EP - 246 VL - 48 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1616/ DO - 10.5802/aif.1616 LA - en ID - AIF_1998__48_1_223_0 ER -
%0 Journal Article %A Lárusson, Finnur %T Compact quotients of large domains in complex projective space %J Annales de l'Institut Fourier %D 1998 %P 223-246 %V 48 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1616/ %R 10.5802/aif.1616 %G en %F AIF_1998__48_1_223_0
Lárusson, Finnur. Compact quotients of large domains in complex projective space. Annales de l'Institut Fourier, Volume 48 (1998) no. 1, pp. 223-246. doi : 10.5802/aif.1616. https://aif.centre-mersenne.org/articles/10.5802/aif.1616/
[BPV] Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, Springer-Verlag, 1984. | MR | Zbl
, , ,[Bes] Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 10, Springer-Verlag, 1987. | Zbl
,[Bla] Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup., 73 (1956), 157-202. | EuDML | Numdam | MR | Zbl
,[BJ] Introduction to differential topology, Cambridge University Press, 1982. | Zbl
, ,[Cam1] Coréduction algébrique d'un espace analytique faiblement kählérien compact, Invent. Math., 63 (1981), 187-223. | EuDML | MR | Zbl
,[Cam2] Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France, 122 (1994), 255-284. | EuDML | Numdam | MR | Zbl
,[CP] Cycle spaces, Several Complex Variables VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, 1994. | MR | Zbl
, ,[FF] Ein Endlichkeitssatz für Hyperflächen auf kompakten komplexen Räumen, J. reine angew. Math., 306 (1979), 88-93. | EuDML | MR | Zbl
, ,[HP] Extending analytic objects, Comm. Pure Appl. Math., 28 (1975), 701-727. | MR | Zbl
, ,[Hit] Kählerian twistor spaces, Proc. London Math. Soc., (3) 43 (1981), 133-150. | MR | Zbl
,[Iva1] Extension of locally biholomorphic mappings of domains into complex projective space, Math. USSR Izvestiya, 22 (1984), 181-189. | Zbl
,[Iva2] The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds, Invent. Math., 109 (1992), 47-54. | EuDML | MR | Zbl
,[Kat1] On compact complex 3-folds with lines, Japan. J. Math., 11 (1985), 1-58. | MR | Zbl
,[Kat2] Factorization of compact complex 3-folds which admit certain projective structures, Tôhoku Math. J., (2) 41 (1989), 359-397. | MR | Zbl
,[Kat3] A non-Kähler structure on an S2-bundle over a ruled surface (1992), unpublished preprint.
,[Kat4] Compact quotient manifolds of domains in a complex 3-dimensional projective space and the Lebesgue measure of limit sets, Tokyo J. Math., 19 (1996), 99-119. | MR | Zbl
,[Kul] Some topological aspects of Kleinian groups, Amer. J. Math., 100 (1978), 897-911. | MR | Zbl
,[Nor] The Schottky groups in higher dimensions, Contemporary Mathematics, 58, Part I (1986), 195-197. | MR | Zbl
,[Sel] On discontinuous groups in higher-dimensional symmetric spaces, Contributions to Function Theory, Tata Institute of Fundamental Research, (1960), 147-164. | MR | Zbl
,[Shi1] On the removal of singularities of analytic sets, Michigan Math. J., 15 (1968) 111-120. | MR | Zbl
,[Shi2] Extension of positive line bundles and meromorphic maps, Invent. Math., 15 (1972), 332-347. | EuDML | MR | Zbl
,[Sim] The monodromy representation of projective structures, Arch. Math., 52 (1989), 413-416. | MR | Zbl
,[Yam] Small deformations of certain compact manifolds of class L. II, Tokyo J. Math., 10 (1987), 189-202. | MR | Zbl
,[Yau] A review of complex differential geometry, Proc. Symp. Pure Math., 52, Part 2 (1991), 619-625. | MR | Zbl
,Cited by Sources: