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COMPACT QUOTIENTS OF LARGE DOMAINS
IN COMPLEX PROJECTIVE SPACE

by Finnur LARUSSON

Introduction.

It has been known for a long time that if a bounded domain St. in C71

is a Galois covering space of a compact manifold M, then Q is a domain
of holomorphy and M is projective, meaning that M is isomorphic to a
subvariety of some complex projective space P^. In fact, the canonical
bundle of M is ample. Bounded domains in C71 can be viewed as domains
in P77' with a large complement: the complement is so large that it contains
a hyperplane in its interior. In this paper, we study the other end of the
spectrum, following suggestions of Nori [Nor] and Yau [Yau] that this might
lead to new and interesting compact complex manifolds, outside the well-
known and much-studied classes of manifolds that are algebraic or in some
sense close to being algebraic.

We will consider compact complex manifolds M covered by a domain
fl, in P71 whose complement E = P71 \ fl. is non-empty and small in the sense
that the (2n - 2)-dimensional HausdorfF measure A^n-2{E) vanishes. This
condition is just strong enough to exclude hypersurfaces in E. Little work
seems to have been done on this subject. Among the few relevant papers
in the literature are [Kati], [Kat2], [Kat3], [Kat4], [Nor], and [Yam].

This work was supported in part by the Natural Sciences and Engineering Research
Council of Canada, and by a VPRSC grant from the University of Western Ontario.
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Schottky covering - Blanchard manifold.
Math. classification: 32J17 - 32J18 - 32M99.
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In Section 1, we establish basic properties of manifolds M of this kind.
These include:

(1) The Kodaira dimension of M is —oo.

(2) The covering group Aut^ ̂  is a subgroup of the automorphism
group of P71, so 7Ti(M) is in fact a generalized Kleinian group.

(3) There is a lower bound on the size of £', which implies that no
2-dimensional examples exist.

(4) M is rationally chain connected. The limit set E can be described
in terms of rational curves in M that respect the unique projective structure
on M.

(5) M is not of class C. In particular, M is neither Kahler nor
Moishezon.

In Sections 2 and 3, we study in some detail two classes of 3-
dimensional examples: the generalized Schottky coverings constructed by
Nori, and Blanchard manifolds, for which E is a line, which is the smallest
it can be. We determine their fields of meromorphic functions, and describe
the surfaces they contain. In Section 4, we make some final remarks on the
general 3-dimensional case.

Let us clarify a few terms. By a curve in a complex manifold, we
shall mean a (closed analytic) subvariety of pure dimension 1. A surface
is a subvariety of pure dimension 2, and a hypersurface is a subvariety of
pure codimension 1. When we speak of a manifold, we assume that it is
connected.

Acknowledgements. I would like to thank Donu Arapura and Frederic
Campana for helpful discussions, and Sergei Ivashkovich and Masahide
Kato for valuable comments on a draft of this paper.

1. Properties of the quotient manifolds.

Let M be an n-dimensional compact complex manifold, n > 2,
covered by a domain Q in complex projective space P71 such that the
(2n — 2)-dimensional Hausdorff measure A^n-2(E) of the complement
E = P71 \ fl, is zero. Then f2 is simply connected, so it is the universal
covering space of M. Let TT : f2 —> M be the covering map, and r ^ 71-1 (M)
be the covering group. We assume that fl, / P71, so F is infinite.
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Let us note that if U is a domain in P71, then U D n is connected. For
this, it actually suffices to have Aan-iC^) = 0. Hence, the compactification
P" of 0 is finer than the end compactification of ^. Indeed, the connected
components of E correspond bijectively to the ends of n, which in turn
correspond bijectively to the ends of T since M is compact. In particular,
E is connected if and only if F has only one end.

We will make much use of the following extension theorem, due to
Shiftman [Shil], [Shi2]. See also [HP].

1.1. THEOREM (Shiffman). — Let E be a closed subset of an n-
dimensional complex manifold X. If A^n-2(E) = 0, then holomorphic,
meromorphic, and plurisubharmonic functions extend from X\E to X. If
A^n-s^E) = 0, then the closure of a hypersurface in X\E is a hypersurface
inX.

The theorem implies that M inherits many properties from P71. We
see that Q has no non-constant holomorphic or plurisubharmonic functions,
and no non-zero holomorphic p-forms for p > 1, so

Hpft(M) =0, p > 1,
and M has a trivial Albanese. Also, no positive power of the canonical
bundle of M has any non-zero holomorphic sections, so M has Kodaira
dimension —oo.

1.2. PROPOSITION. — Let (p : fl, —> P71' be a holomorphic map.

(1) (p extends to a rational map P71 —> P71.

(2) If <p is an immersion, then (p extends to an automorphism of
P71. In particular, every automorphism offl. is the restriction of a unique
automorphism of?71, so

rcAutP^PGHn+l.C).

By Selberg's theorem [Sel], the proposition implies that F has a
normal torsion-free subgroup of finite index. It also implies that E C P71 is
a biholomorphic invariant of M, modulo automorphisms of P71.

Proof. — The meromorphic function {zi/zo) o (p on Q extends to a
meromorphic function ̂  on P71, and ^ = [1, ̂ i , . . . , ̂ n] is a rational map
pn _^ pn extending ^>.

Write ̂  == [go? • • - ? Qn]i where go? • . • 5 Qn are homogeneous polynomials
in ZQ, ... ,Zn of the same degree d, and let ^ = (qo,..., qn): C71"^1 —> C7^1.
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Let p : C"^1 \ {0} —> P"' be the canonical projection. Suppose y is an
immersion. Then ^Ip"1^) is an immersion. The zero set of the Jacobian
determinant J = det[9qi/9zj] of ^ is either empty or a hypersurface in
p"1^) U {0}. Since p~l(E) cannot contain a hypersurface, J is a non-zero
constant. Also, J is homogeneous of degree (d — I)71'1"1. Hence d = 1, so
<7(h • - • ? Qn are linear, and ^ is an automorphism of P71. D

Part 2 of the proposition can also be deduced from [Ival], Theorem 1.

We remark that Q, is maximal among domains in P71 on which F
acts with a Hausdorff quotient. Indeed, if ̂  is a domain containing f^ on
which r acts with a Hausdorff quotient M' = f^/F, then M C Mf is both
open and compact, and hence closed, so since M' is connected, M = M'.
Therefore, ^' C TO = ^, so 0' =^.

We now show that there is a lower bound on the size of E.

1.3. PROPOSITION. — Ifn is even, then An{E) > 0. If n is odd,
then An-i(E) > 0.

Proof. — Suppose K^n-2k{.E) = 0 for an integer k in [0,n]. Then
fl, contains a /^-dimensional complex linear subspace S. Find a sequence
7^ —> oo in r. Then 7z(*S') converge to a ^-dimensional linear subspace in
E, so A2k(E) > 0. Hence, 2fc < 2n - 2fc, so A; < n/2. This shows that if
k >_ n/2, then K'zn-2k{E) > 0, and the proposition follows. D

Since A^n-2(E) = 0, the proof shows that E contains a line.

1.4. COROLLARY. — If a domain fl, in P2 covers a compact complex
manifold, then 0 = P2 or A2(P2 \ ^) > 0.

The proposition is sharp in the sense that we may have An-^-e(E) = 0
when n is even and An-i+e(£') = 0 when n is odd for all e > 0. To see
this, let k be n/2 if n is even and (n — 1)/2 if n is odd, and consider the
automorphism (p given by the formula

ip[zo, . . . ,2^,2^+1, . . . ,Zn] = [2ZQ, . . . ,2^,^+1, . . . ,^].

The group r of iterates of ^ acts freely and properly on d = P71 \ £',
where £? is the union of the two linear subspaces {^o, . . . ,^ = 0} and
{ ^ f e + i , . . . , Zn ==0}, and the quotient manifold M = 0/T is compact.

Next we show that M contains many rational curves.
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1.5. PROPOSITION. — IfL is a line in Q, then 7r(L) is a rational
curve in M. Hence, M is rationally chain connected.

For a very general point p € M and every v in a dense set of tangent
vectors at p, there is a smooth rational curve through p which is tangent
to v.

For very general points pi,p2 m M, there is a connected curve
containing pi and p^ which is the union of two smooth rational curves.

Recall that a general point is a point outside a finite union of proper
subvarieties, and a very general point is a point outside a countable union
of proper subvarieties.

For the proof, we need the following lemma.

1.6. LEMMA. — For an automorphism y? oiP71, n > 3, the following
are equivalent:

(1) L H (p(L) -^ 0 for all lines L in P71.

(2) (p has a hyperplane of fixed points.

Proof. — (2) =^ (1) is clear. For the converse, represent (p by a matrix
A in GL(n + 1,C). First let n = 3. In suitable coordinates ^0,^1,^2,^3 in
C4, A has the Jordan form

ao 0 0 0 "
ei oi 0 0

A
0 C2 02 0 '
0 0 €3 03.

where ei, €2, €3 € {0,1}. Suppose Sr\AS ^ 0 for all 2-dimensional subspaces
S in C4. We need to show that A has a 3-dimensional eigenspace.

Suppose first that A is diagonal. Let S = {z^ = Zi- = ^3}
with io^i^2^3 mutually distinct. Since S H AS -^ 0, we get a^ == o^ or
a^ = 0^3. This means that three of the diagonal entries must be the same,
so A has a 3-dimensional eigenspace.

Now suppose A is not diagonal; say €3 = 1, so 02 = 03. Let
S == {zo = Z3, ̂ i == 0}. Since S H AS' ̂  0, there are x, y e C, not both zero,
such that

A

aox
e^x
0'2V

_y+a^x_

€5,
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so e-tX = 0 and aox = y + 033;. This implies that ei = 0. Taking
5' = {zo = Z2,^3 = 0}, we get €2 == 0. Taking S = {zo = z^z^ = 0},
we get ao = ai. Finally, taking S = {zo = z^, 2:1 = 2:3}, we get OQ = 02, so
A has only one eigenvalue and a 3-dimensional eigenspace corresponding
to it.

To disprove (1) in general, it suffices to find a 4-dimensional A-
invariant subspace in C^1 which does not contain a 3-dimensional
eigenspace. By examining Jordan forms, it is easy to see that such a sub-
space exists precisely when A does not have an n-dimensional eigenspace,
i.e., when (2) fails. D

Proof of Proposition 1.5. — Let L be a line in ^. Then 7r(L) is an
irreducible curve in M. Now y e L is in a fibre of TT\L with more than one
element if and only if y e L H ̂ L for some 7 € F, 7 7^ id. Since F acts
properly on f^, there are at most finitely many 7 G F with L D 7^ ^ 0.
Also, if 7L = L, then 7 has a fixed point in L, so 7 = id. Hence, 7r|L is
injective outside a finite set, so 7r(L) is rational.

For 7 G r, let Y(^) be the set of y e P71 such that L ^ ^ L ^ 0
for all lines L through ^/. Then V(7) is a subvariety of P71. We have
/3Y^) = Y((3-y/3-1) for /3 e F. Also, for a compact subset K of ^, we
have Y^) H K ^ 0 for only finitely many 7 G F since F acts properly
on ^. This implies that ^(7) = 7r(y(7) D f^) is a subvariety of M. Now
n > 3 by Corollary 1.4, so if 7 ̂  id, then ^(7) 7^ M by Lemma 1.6. Let
x = u ^(7).

79'id

Let p € M\X (so p is a very general point) and q € Tr"1^). For 7 € F,
7 7^ id, let C^ be the set of lines L in ^ through ^ such that L H 7^ = 0.
Then C^ is open and dense in the (n — l)-dimensional projective space
of lines through q in P^ By the Baire category theorem, the intersection
n/^y is dense. If L is in the intersection, then TT\L is injective, so 7r(L) is a
smooth rational curve through p.

Now let pi,p2 C M \ X and g^ e Tr"1^), A; = 1.2. For 7 € F,
7 7^ id, and k = 1,2, let 5(7, k) be the union of lines L in ^ through ^
such that L n 7L = 0. Then S(^,k) is open and dense in ^ \ {^}, so
the intersection Q ^(7, A;) is dense in Cl. Hence there are intersecting lines

7,fe

Li, Z/2 in 0 through 01,92 respectively, such that TT is injective on both Li
and Z/2. Then 7r(Li) U 7r(L2) is a connected union of two smooth rational
curves in M containing both pi and p2- D
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The proposition implies that if n = 3 and the algebraic dimension
a of M is 0 or 1 (examples of which will be given in sections 2 and 3),
then there is no holomorphic surjection / from M onto a 2-dimensional
complex manifold. Namely, if a = 0, then there are only finitely many
surfaces in M. If a = 1, then there is a complex manifold X, a compact
Riemann surface Y (the algebraic reduction of M), a proper modification
g \ X —> M, and a holomorphic surjection h : X —>• V, such that with
only finitely many exceptions, an irreducible surface in M is an irreducible
component of g{h~l{y)) for some y € Y, See [FF]. In either case, by the
proposition, there is a smooth rational curve C in M which is not contained
in any surface in M. But C is contained in the surface f~l(f(C))^ which
is absurd.

Let us recall that an atlas of holomorphic charts on M is called
protective if the charts map to open sets of P71 and the coordinate changes
are restrictions of automorphisms of P71. A projective atlas on M defines
an element of Jf^M, PGL(n 4-1, C)), called a protective structure on M.
Equivalently, a projective structure on M is given by a conjugacy class
of group homomorphisms 71-1 (M) —> PGL(n + 1,C). Clearly, M has a
projective structure. For more information and references, see [Sim]. A
projective structure on M yields a developing map, which is a holomorphic
immersion from the universal covering space Q of M to P^. By Proposition
1.2, any such map is an automorphism of P71, so the projective structure
on M is unique.

The projective structure on M defines a germ Fp of a holomorphic
foliation at each point p in M, obtained by pulling back a pencil of lines by
a projective chart. I f p e M and q € 7^~l(p)^ then the leaf space Dp of Fp
is naturally identified with the space P71-1 of lines through g, so we have a
linear projection of P71 \ {q} onto Dp. Since E is F-invariant, its image in
Dp is well defined, regardless of the choice of q.

We say that a curve in M respects the projective structure on M if
it appears as a union of straight lines in each projective chart, i.e., if its
germ at every point p (or merely at some point in each of its irreducible
components) is a union of germs in Dp. Note that the rational curves
constructed in the proof of Proposition 1.5 are of this kind.

Our next result relates E to rational curves in M that respect the
projective structure.

1.7. PROPOSITION. — A germ in Dp extends to a rational curve in
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M if and only if it does not lie in the image ofE in Dp.

A germ in the image of E in Dp may or may not extend to a curve
in M. This can be verified by explicit computations for the example of a
Blanchard manifold of type A given in [Kat2] (see Section 3). There, some
germs extend to a torus in M, and others do not extend to a curve at all.

Proof. — Let L be the line through q corresponding to a germ in Dp
outside the image of E, so L C ^. Then the curve 7r(L) in M is rational
by Proposition 1.5.

Conversely, suppose L is a line through q that intersects E, and that
the corresponding germ in Dp extends to a rational curve C in M. Then
there is a non-constant map P1 —> C C M, which lifts by TT to a map
P1 —^ ^2, whose image lies in TT'^G) C F(L \ E). Hence, the image lies in
a connected component of 7(L \ E) for some 7 C F, but such a component
is isomorphic a domain in C, which is absurd. D

It remains to be seen if new information about E can be obtained
from this result. It does, however, say something about rational curves in
M through a given point that respect the projective structure.

1.8. COROLLARY. — The set of germs in Dp that do not extend to a
rational curve in M is closed, nowhere dense, non-empty, and, when n = 3,
connected.

Proof. — Only the last statement needs to be proved. Let L be a
line in fl,. Let e be an end of r and (7^) be a sequence in r converging
to e. Then the lines 7n(^) converge to the connected component EQ of
E corresponding to e, so £'0 contains a line. This shows that if £'0 is a
connected component of E, then the image of EQ in Dp ^ p71-3- contains a
line. If n = 3, then two such lines must intersect, so the image of E in Dp
is connected. D

We conclude this section by showing that M is far from being
projective.

1.9. PROPOSITION. — M does not carry a Kahler metric.

It is easy to see that a domain in P71 that contains a complex line
does not admit a Shafarevich map (also known as a F-reduction). Since
universal covering spaces of compact Kahler manifolds have Shafarevich
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maps [Cam2], this implies Proposition 1.9. Also, a domain in a complex
manifold is locally Stein if it covers a compact Kahler manifold [Iva2].
Since fl, is not locally Stein, Proposition 1.9 follows. We will give a detailed
proof using much simpler means.

The Fubini-Study metric on P71 is Kahler and invariant under unitary
transformations, so the following corollary is immediate.

1.10. COROLLARY. — r (jL PU(n + 1).

The following lemma is well known. We supply a proof for the
convenience of the reader.

1.11. LEMMA. — IfM is a compact Kahler manifold and H^^^M)
= 0, then M is protective.

Proof. — Let a; be a Kahler form on M. We can find a e ̂ (M, Q)
so close to [uj\ C H2{M,R) that a is positive (but a priori not necessarily
of type (1,1) any more). For some integer k > 0 we have ka € ^(M, Z).
Since ̂ ^(M) = 0, the long exact sequence obtained from the exponential
sequence O — ^ Z — ^ O — ^ C ^ — ^ 0 shows that ka is the Chern class of a line
bundle L on M. Then L is positive, so M is projective. D

Proof of Proposition 1.9. — Suppose M is Kahler. By the lemma,
M is projective, and hence Moishezon, but this contradicts the following
proposition. D

1.12. PROPOSITION. — M is not Moishezon.

Proof. — By the extension theorem 1.1, the field M.{M) of mero-
morphic functions on M can be identified with the field of F-invariant
meromorphic functions on P7'1. Suppose M is Moishezon, so M-(M) has
transcendence degree n over C. Now M^) = C(Xi,. . . ,Xn) also has
transcendence degree n over C, so A^P71) is algebraic over M(M).

Let / € A^P71). Then there are ^i , . . . , gj, € M{M) such that

/ f e +^l / f e - l +• . .+^=0 .

Say p € f2 and ^ I , . . . , ^A ; are all finite at p. Then /(7p), 7 € F, are
roots of the same polynomial, so the set /(Fp) is finite. Taking / = Z i / z o ,
i = 1,.... n, we see that F has a finite orbit in f^, which is absurd. D
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When n = 3, by a result of Kato [Kati], page 53, if the algebraic
dimension of M is non-zero, then there is a plane P in P3 which is invariant
under a subgroup TQ of finite index in F. Then we have an embedding
of To into AutP ^ PGL(3,C) by 7 ̂  7|P. One might say, therefore,
that the "truly" 3-dimensional examples have algebraic dimension zero. In
the following sections, we will see 3-dimensional examples with algebraic
dimensions 0, 1, and 2.

Let us recall that a compact reduced complex space X belongs to the
class C (as defined by Fujiki) if there is a compact Kahler manifold Y and
a holomorphic surjection Y —> X. Equivalently, X is bimeromorphically
equivalent to a compact Kahler manifold. All reduced Moishezon spaces are
contained in C. For more information, see [CP] and the references therein.

We need the following property of the class C.

1.13. THEOREM (Campana [Cami]). — Let X be an irreducible
compact complex space of class C. Then a very general point in X is
contained in a largest irreducible Moishezon subvariety.

The following result combines and strengthens Propositions 1.9 and
1.12.

1.14. THEOREM. — M is not of class C.

Proof. — Let p be a point in M. If there is a largest irreducible
Moishezon subvariety Y through p, then Y must be M itself by Proposition
1.5. But M is not Moishezon by Proposition 1.12, so M is not of class C
by Campana's theorem. D

2. Schottky coverings.

Nori [Nor] has constructed higher-dimensional analogues of the clas-
sical Schottky coverings in the following way. Let n = 2 f c + l , A ; > l , and
g > 1. Choose 2g mutually disjoint linear subspaces Li , . . . , L^g of dimen-
sion k in P71. Fix an integer i with 1 < i <_ g and choose a basis so that

Li == {2:0 , . . . , zj, = 0}, Lg^i = {^+1,... , Zn = 0}.
Define ( p i : P71 -> R by the formula

koP+.-.+l^l2
^[^•••^n] = I^P+.-.+M2 '
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and define open neighbourhoods

V, = {x C P71 : (^OT) < a}, Vg^i = {x € P71 : ̂ (rc) > 1 - a},

of Li, Lg^ respectively, where 0 < a < -. Define an automorphism 7^ of
P71 by the formula

^i[zo, • . . , Zn} = [A^o, . . . , A^fe, ̂ fc+i, . . . , Zn},

where A <E C and |A| = -1 - 1. Then ^(V,) = P71 \ V^. Let F be
the subgroup of PGL(n + 1,C) generated by 7i,...,7^. Let A be the
complement of Vi U ... U Vzg, and let Q, = |j 7A.

^er
Suppose a is so small that the closures of the sets V\,..., V^g are

mutually disjoint. Any positive power of 7^ maps P71 \ Vi into V^+i, and
any negative power of 7^ maps P71 \ V^+i into Vi. Hence, any non-trivial
word in 71,..., 7g maps the interior of A into its complement, so it is not the
identity, and r is free on the generators 71,..., 7?. Also, Q, is a domain on
which r acts freely and properly with compact quotient M. Let TT : Q —> M
be the covering map. The compact manifold M is precisely the quotient
space of A obtained by identifying the disjoint subsets 9Vi and QVg^-z of A
by the transformation 7^ for i = 1,..., g .

The complement E of f2 in P71 is the closure of the F-orbit of
Z/iU. . .UL^g. Its connected components are ^-dimensional linear subspaces.
When g >, 2, E is a "Cantor set of ^-dimensional linear subspaces". Given
e > 0, E has (2k + e)-dimensional Hausdorff measure zero if a is small
enough. Suppose a is so small that A^n-2(E) = 0. Then ^ is simply
connected, so 71-1 (M) = T is free on g generators.

In this section, M will denote a manifold constructed as above. We
will call M a Schottky manifold.

Note that if g •=- 1, then the functions
ZT, Zk Zk-^-2 ^n

ZQ ? ? ZQ ? 2^+1 ' ' Zk-^-1

descend to algebraically independent meromorphic functions on M, so the
algebraic dimension a(M) of M is at least n — 1. Also, E = I/i U 1/2, so
A2n-2(-K) = 0, and a(M) = n - 1 by Proposition 1.12.

Now let M be a 3-dimensional Schottky manifold with g > 2. The
remainder of this section will be concerned with determining the function
field of M and the surfaces contained in M for small values of a.
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Let Y be an irreducible surface in P3 which is invariant under a
subgroup of finite index in F. Let 1 < i < g. Choose a basis so that
Li and Lg^ are given as above. Now Y is invariant under 7^ for some
natural number m > 1, so if [zo ,2:1,2:2 ,2:3] e Y \ (Li U Lg^i), then
[A7^ 2:0, A7^ 2:1,2:2,2:3] e V for all j € Z. Hence, V has infinitely many
points in common with the line L through the points [0,0,2:2,2:3] e Li
and [2:0,2:1,0,0] € I/^+i, so L C V. This shows that Y is a union of lines
intersecting both Li and I^+,, along with either L, or Lp+,. If Y contains
only one of the lines Li, Lg^i, then Y is a plane containing that line. The
same will hold for other values of %, but that is absurd, since two lines in a
plane intersect. Hence, Y contains all the lines L i , . . . , L^g, and for each i
with 1 <_ i <, g, Y is a union of lines intersecting both Li and Lg^i.

If Z is another irreducible surface in P3 which is invariant under a
subgroup of finite index in F, then both Y and Z are invariant under the
same subgroup F' of finite index in F. Then Y H Z contains the F'-orbit of
Li U ... U 1/2^, which is a union of an infinite number of mutually disjoint
lines, so Y = Z. This shows that there is at most one surface in P3 invariant
under a subgroup of finite index in F.

If / is a meromorphic function on M and A^(E) = 0, then / o TT
extends to a meromorphic function h on P3. Applying the above to the
level sets of h gives the following result.

2.1. PROPOSITION. — Let M be a 3-dimensional Schottky manifold
with g > 2. If A^(E) = 0, which is the case if a is small enough, then M
has no non-constant meromorphic functions.

In the remainder of the section, we assume that ^(E) = 0.

Let S be a smooth surface in M. The closure Y of 7^~1(S) is a F-
invariant surface in P3. If Y is not smooth with singular locus Z, then
Z C E and Z is F-invariant. Since a group with infinitely many ends acts
on its space of ends with dense orbits [Kul], this contradicts Z having
only a finite number of connected components. Hence, Y is smooth and
irreducible. Since Y is covered by rational curves, its degree is 1, 2, or
3. Since Y contains disjoint lines, it cannot be a plane. Since Y contains
more than 27 lines, it cannot be a cubic. Hence, Y is a quadric. In suitable
projective coordinates, Y is the image of?1 xP1 under the Segre embedding,
and Y has two rulings by lines, which are the only lines in Y. Two disjoint
lines in Y must belong to one of the rulings. In particular, the lines
^i? • • • 5 L"zg lie in a quadric.


