Families of curves and alterations
Annales de l'Institut Fourier, Tome 47 (1997) no. 2, pp. 599-621.

Dans l’article on prouve que toute famille de courbes peut être altérée en une famille semi-stable. Soit S un schéma excellent de dimension 0, 1 ou 2 et soit X un schéma séparé de type fini sur S. Alors le résultat implique qu’on peut altérer X en un schéma régulier. C’est un résultat plus fort que ceux de [Smoothness, semi-stability and alterations à paraître dans Publ. Math. IHES]. De plus, on considère des situations où un groupe fini agit, et on obtient des résultats analogues.

In this article it is shown that any family of curves can be altered into a semi-stable family. This implies that if S is an excellent scheme of dimension at most 2 and X is a separated integral scheme of finite type over S, then X can be altered into a regular scheme. This result is stronger then the results of [ Smoothness, semi-stability and alterations to appear in Publ. Math. IHES]. In addition we deal with situations where a finite group acts.

@article{AIF_1997__47_2_599_0,
     author = {Jong, A. Johan de},
     title = {Families of curves and alterations},
     journal = {Annales de l'Institut Fourier},
     pages = {599--621},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {47},
     number = {2},
     year = {1997},
     doi = {10.5802/aif.1575},
     zbl = {0868.14012},
     mrnumber = {98f:14019},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1575/}
}
TY  - JOUR
AU  - Jong, A. Johan de
TI  - Families of curves and alterations
JO  - Annales de l'Institut Fourier
PY  - 1997
SP  - 599
EP  - 621
VL  - 47
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1575/
DO  - 10.5802/aif.1575
LA  - en
ID  - AIF_1997__47_2_599_0
ER  - 
%0 Journal Article
%A Jong, A. Johan de
%T Families of curves and alterations
%J Annales de l'Institut Fourier
%D 1997
%P 599-621
%V 47
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1575/
%R 10.5802/aif.1575
%G en
%F AIF_1997__47_2_599_0
Jong, A. Johan de. Families of curves and alterations. Annales de l'Institut Fourier, Tome 47 (1997) no. 2, pp. 599-621. doi : 10.5802/aif.1575. https://aif.centre-mersenne.org/articles/10.5802/aif.1575/

[1] A.J. De Jong, Smoothness, semi-stability and alterations, Publications Mathématiques I.H.E.S. | Numdam

[2] A.J. De Jong and F. Oort, On extending families of curves, to appear in Journal of Algebraic Geometry. | Zbl

[3] N.M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies 108, Princeton University Press (1985). | MR | Zbl

[4] J. Lipman, Desingularization of two-dimensional schemes, Annals of Mathematics, 107(1978), 151-207. | MR | Zbl

[5] D. Mumford and J. Fogarty, Geometric invariant theory, Second Enlarged Edition, Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer Verlag (1982). | MR | Zbl

[6] M. Raynaud and L. Gruson, Critères de platitude et de projectivité, Techniques de "platification" d'un module, Inventiones Mathematicae, 13 (1971), 1-89. | Zbl

Cité par Sources :