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1. Introduction.

This paper is a continuation of or sequel to the article [1]. The main
point that is in this paper and that was missed by the author while writing
[1] is that one can alter any family of curves into a semi-stable family. In
[1] this was done only in special cases, see [1, Theorem 5.8]. It should be
mentioned that this result on families of curves was "known to be true" to
mathematiciens working on moduli of varieties.

Thus the main theorem of this paper is Theorem 5.9. The applications
are derived by arguments that are similar to the arguments of [1]; the
results are slightly stronger than the results of that paper. For example,
the theorem implies that any proper dominant morphism X —>• S of integral
excellent schemes may be altered into a composition of semi-stable curve
fibrations, see Theorem 5.9, Corollary 5.10 and Remark 5.16. It gives an
alternative proof of a stronger version of [1, Theorem 8.2] concerning

Key words: Varieties — Curves — Alterations — Group actions.
Math. classification : 14.
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semi-stable families over an excellent base scheme of dimension 1, see
Corollary 5.1.

Another point of this paper is to deal systematically with group ac-
tions as well; the advantage of this is that one gets resolution of singularities
up to quotient singularities in certain cases, see Theorem 5.13 and its co-
rollaries. Finally, the results of [1] are extended to integral schemes of finite
type over excellent base schemes of dimension ^ 2, see Corollary 5.1.

For an indication as to how to get cohomological applications of the
geometric results obtained in this paper we refer to the introduction of [1].

Acknowledgements. — The author would like to thank D. Abramo-
vich, J. Harris, B. Hasset and F. Oort for discussions on the subject of this
paper. The idea to prove case vii (b) of Theorem 2.4 came to the author
only after Abramovich's remark that one should be able to prove such a
thing using Kontsevich spaces of stable maps. (Although we do not do so,
this way one could prove Theorem 2.4.) Some of the formulations of the
results were found in discussions with Abramovich and Hasset. A theorem
in characteristic zero very similar to Theorem 5.9 can be found in a secret
preprint by Abramovich.

2. Set up and statement of theorem.

Throughout this paper we adopt the notations, conventions, defini-
tions and terminology of [1, Section 2].

Situation 2.1. — Here we have a proper morphism / : X —> S of
integral excellent schemes whose generic fibre X^ has dimension 1. We
have a finite group G acting on /, i.e., actions of G on X and S such that /
is G-equivariant. In addition we have a proper closed subset Z C X which
is G-stable, i.e., for all g e G we have g(Z) C Z. We note that the extreme
cases Z = 0 or G = {1} (or both) are allowed.

In the sequel we will consider the following conditions on (/ : X —^
5,G,Z).

(2.1.1) The generic fibre Xrj is smooth over rj and Zy, is etale over 77.

(2.1.2) The morphism / is projective.

(2.1.3) All fibres of / are equidimensional of dimension 1.

(2.1.4) The variety X^ is geometrically irreducible over rj.
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(2.1.5) The quotient X^/G is geometrically irreducible over R(S)G.
We note that (2.1.4) implies this condition.

(2.1.6) (Assume (2.1.3).) For any geometric point s of S and any
irreducible component C of Xg the normalization of C has genus at least 2.

2.2. Alterations of Situation 2.1. — This refers to a commutative
diagram of morphisms of schemes

V»
X1 —^ Xv \'

6
S' ——^ S,

where (/' : X' -> S ' , G ' , Z 1 ) and (/ : X -^ 5,G,Z) are as in Situation
2.1. Further we demand that ^ and (f) are alterations, ^^{Z) = ^ an(^
that a surjection G' —>• G is given such that ^ and (f) are G'-equivariant
morphisms.

In the sequel we will consider the following conditions on the pair
(̂ M).

(2.2.1) The field extension R^S)0 C R^S')0' is purely inseparable and
the field R(X/)Gf is the residue field of the local ring R(S/)Gf^R^R^X)0.

(2.2.2) The field R(X') is a quotient of the ring R(X) (S)R(S) ^(S^
i.e., the generic fibre X'^i maps birationally to an irreducible component of
X ^ x s S ' .

(2.2.3) The field R(Xf) is separable over the image of the natural map
R(X)<S)^s}R(S/) -^ R(X/). This implies that the field R(X/)Gf is separable
over the image of the natural map R(X)G 0j?(5)c R^S1)0' —^ R(Xf)Gf.

(2.2.4) Let TV C G' be the kernel of the map G' -^ G x Aut5".
The field R(X/)N is a quotient of the ring R{X) 0j^) J^(5/). This means
that the curve X/ , / N maps birationally onto an irreducible component of
X ^ x s S ' .

(2.2.5) The field extensions R(S) C R(S/) and R(X) C .R(X') are
separable. This means that the alterations -0 and (j) are generically etale.

(2.2.6) Let H = Ker(G -> Aut S) and H ' = Ker(G/ ̂  Aut S"). Then
H ' —f H is surjective.

(2.2.7) The morphisms '0 and <p are projective.
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Remarks 2.3. — We make some obvious observations.

(i) The conditions above are by no means independent. For example
the conditions (2.2.1), (2.2.5), (2.2.2) and (2.2.4) all imply (2.2.3).

(ii) Various combinations of the conditions above have interesting conse-
quences. E.g. if (^,0) satisfies (2.2.4) and (2.2.6) then X ^ / H ' is birational
to a component of (Xrj/H) 0 ^(rf). If (^,0) satisfies (2.2.1) and (2.2.5)
then we have R(S)0 == R^)0' and R^X)0 = R(Xf)Gf. In particular the
field extensions R(S) C fi(5') and R(X) C R^X') are Galois and certain
subgroups of G' surject onto their Galois groups. From this we see that
(2.2.1) and (2.2.5) imply (2.2.4).

(iii) It is clear how to define compositions (^, 0) o (^/, 0') of given alte-
rations ('0,0) and Q/^,0'). If the alterations ('0,0) and ('0',0') satisfy one
of (2.2.1), (2.2.2), (2.2.5), (2.2.6) or (2.2.7) then so does the composition.

(iv) If, in the situation of (iii), we have that ('0,0) satisfies (2.2.4) and
(^',0') satisfies (2.2.6) and (2.2.4), then the composition (^,0) o (0',0')
satisfies (2.2.4).

(v) If Xrj is geometrically irreducible, then the condition (2.2.2) implies
that the curves Xrj and X^ have the same geometric genus. If Xr, is also
geometrically reduced, then (2.2.2) is equivalent to the birationality of the
morphism X^ —> X^® i^(r]').

THEOREM 2.4. — Let (/ : X -^ S, G, Z) be as in Situation 2.1. There
exists an alteration (/i : X\ —> S'i, Gi, Zi) as m 2.2

Xi ^ X

i" ['
S, ^ 5,

with the following properties:

(i) The morphism /i is a projective semi-stable family of curves over
5i with (irreducible) smooth generic fibre.

(ii) There are disjoint sections Oi: 5i —^ Xi, i = 1,..., n of /i into the
smooth locus of X\ over Si such that Z\^ = {^1(^1),. • . ,^n(^i)}.

(iii) The alteration ('0i,0i) satisfies (2.2.7) and (2.2.4) (and hence
(2.2.3)).

(iv) If(f:X^ S,G,Z) satisfies (2.1.5), then (^i,0i) satisfes (2.2.1).

(v) If(f:X^ 5,G,Z) satisfes (2.1.4), then (^i,0i) satisfies (2.2.6).
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(vi) Ii(f :X -^ 5,G,Z) satisfies (2.1.1), then (^i,^>i) satisfies (2.2.5).

In addition we can choose the diagram such that

(vii)(a) The n-pointed curve (Xi, ai, . . . , o-n) over 5i is stable.

Or we can choose ('0i, <^i) such that in addition to (i)-(vi) we have

(vii)(b) The generic fibre {X\}^ of/i is the normalization of an irreducible
component ofXrj ^R(S) ^(*S'i)? Le'? th^ alteration ('0i, ̂ i) satisfies (2.2.2).

Remark 2.5. — The condition on Z\^ implies that

Zi = ̂ \Z) C ai (5i) U ... U <^(5i) U f^\D)

for some proper closed subset D C 61 invariant under G\.

2.6. Procedure of the proof of Theorem 2.4. We are going to alter (2.2)
repeatedly our family / : X —> 5, finally reaching a situation which satisfies
(vii)(a) or (vii)(b). This is allowed, because a composition of alterations as
in 2.2 is another such. Of course we have to check that the final alteration
has all the properties required of it in Theorem 2.4, e.g. in case (vii)(b)
we will have to make sure the alterations we use all have property (2.2.2).
However, the first step in 2.9 will be to reduce to the case where X^ is
geometrically irreducible over 77 and (Xyy, Zrj) is smooth over 77; after that
we will have alterations satisfying the properties (2.2.1), (2.2.5), (2.2.6) and
(2.2.7) (these imply (2.2.3) and (2.2.4)). In case (vii)(b) we also require
(2.2.2). It is then easily verified that the end result is what we want
(compare Remarks 2.3).

2.7. Let us produce a useful alteration of (/ : X —> 5, (5, Z) in the
case that S = Spec k where k is a field. Choose a finite purely inseparable
extension k C fc' as in Lemma 2.8 below. In the case that X is smooth
and Z etale over k we take k ' = k. Put k" equal to the compositum of the
fields g(k'\ g e G inside the perfect closure of k. (Note that G acts on the
perfect closure of A;.) Then A/' works as well in Lemma 2.8 and G acts on
k " . Let X\ be the normalization of the reduction of X 0^ k" and let Z\
be the inverse image of Z in Xi. The group G acts on the smooth pair
(Xi,Zi) over fc". Let X\ —> Specfci —> Speck" be the Stein factorization
of the morphism X\ —^ Spec A;". The group G acts on fci by uniqueness
of Stein factorization. Put 5i = SpecA;i. The triple (Xi -^ Si,G,Zi) has
properties (2.1.4) and (2.1.1).
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Note that we trivially have (2.2.4) and (2.2.2) for the alteration
(Xi,5i) —> (X^S) so obtained. In case the pair (X,Z) is smooth over
k, we have that k C fci is separable, hence (2.2.5).

In case X/G is geometrically irreducible over k°, we see that the
extension k° C k° is purely inseparable as X-^/G —^ X/G is purely
inseparable. Let Y ̂  X/G®^ (k")0 be the reduction of X/G 0^ (k")0.
The morphism a : X (g)^ fc" —> X/G 0^0 {k")0 is generically etale and an
open part of Xi is equal to an open part of a'^V). Thus

deg(Xi -^ Y) = deg(X ̂  k" -^ X/G ̂ c (k^0)
= deg(X -. X/G) . [k11 : (k")0}/^ : k0}
= deg(X -^ X/G).

But deg(Xi -^ X^/G) = deg(X -^ X/G) (we did not make the group
bigger), hence we conclude that Xi/G —^ Y is birational. This proves the
last assertion of (2.2.1).

Finally, assume that X is geometrically irreducible over k. In that
case we have fci = k " , and the property (2.2.6) is clear for the alteration
(Xi,5i)-^(X,5).

LEMMA 2.8. — Let X be a, variety of dimension 1 over a field k and let
Z C X be a proper closed subset. There exists a finite purely inseparable
extension k C k' such that the normalization X' of the reduction ofX<S)k k'
is smooth over k ' and the inverse image Z/ C X/ of Z is etale over k ' . Any
further extension k ' C k" has the same property.

Proof. — Omitted, n

2.9. (Reduction to the case where we have (2.1.1) and (2.1.4).) Let
(/ : X -^ S,G,Z) be as in 2.1. Let (V -^ Spec^,G,Zy) be the
alteration of (X^ —^ rj,G,Z^) constructed in 2.7. We set 5' equal to
the normalization of S in K^ and X' equal to the normalization of X
in R(Y). The universal property of normalization assures that we get a
proper morphism /' : X/ —^ S/ and that G acts on /'. In other words, we
have an alteration (-0, (f)) : (X', 5") —^ (X, S) as in 2.2. The generic fibre of
X' is V and hence X' -^ S ' satisfies (2.1.1) and (2.1.4).

As was shown in 2.7, the pair (-0, </)) satisfies (2.2.2) and (2.2.4) and
if / satisfies one of the conditions mentioned in Theorem 2.4, then ('0,0)
satisfies the corresponding condition. The morphisms ^ and (f) are finite
hence projective. As explained in 2.6, we reduce to the case that we have
(2.1.1) and (2.1.4).
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2.10. Assume (2.1.1) and (2.1.4). By Chow's lemma there exists a
projective modification X' —> X such that X' is projective over S. By
averaging over G, as explained in [1, 7.6], we may assume that G acts on
X' . Note that X'^ ^ X^ as Xrj is smooth over rj. Thus we may replace X
by X' and assume that we have (2.1.2).

By [6, page 37-38] there is a canonical minimal modification S ' —^ S
which is projective, such that the strict transform X' of X with respect to
5" -^ S is flat over S ' . Thus G acts on X' -. S ' and we have X^ ^ X^.
The alteration (X', S") —> (X, S) satisfies all properties listed in 2.2. Thus
we may replace (X, S) by (X', 5') and assume that we have (2.1.1), (2.1.3),
(2.1.2) and (2.1.4).

In Section 3 we prove case (vii)(a) of Theorem 2.4 under these
assumptions. In Section 4 we deduce case (vii)(b) from case (vii)(a) (under
the same assumptions).

3. Genus goes up.

3.1. Throughout this section the triple (/ : X —^ 5,G,Z) satisfies
(2.1.1), (2.1.3), (2.1.2) and (2.1.4). In this section we will prove Theorem
2.4 in this case.

3.2. Suppose that R{S) C L is a finite separable extension such that
R(S)° C L is Galois. Then we can put 5" equal to the normalization
of S in L and X' = (X Xs S")red. For the group G' we take the fibre
product G' = G XGai(J?(5)/^(5)<?) G^L/^S)0) (compare with [1, 7.12]).
It is easy to see that the resulting alteration (/' : X' —^ S ' . G ' . Z ' )
of (/ : X —^ S ^ G ^ Z ) satisfies all the conditions listed in 2.2 and that
(/' : X' -^ S ^ G ' . Z ' ) satisfies (2.1.1), (2.1.3), (2.1.2) and (2.1.4) as well.
In this way we may enlarge R(S).

3.3. These remarks prove case (vii)(b) of Theorem 2.4 if S == Spec k is
the spectrum of a field, as we can make the points of Z C X rational after
enlarging k as above. Case (vii)(a) follows by choosing a suitable covering
of X, to make the pair (X, Z) stable, details left to the reader. Therefore,
from now on we will assume that 5' is not the spectrum of a field, i.e.,
dim S > 0.

3.4. Let H = Ker(G —> Aut S). As X is projective over 5, the quotient
Y = X / H exists and is an integral scheme, projective over S of relative
dimension 1.
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For any closed point s G S we will construct an affine open neigh-
borhood U C S and a finite morphism y? : Xu —^ P^- with the following
properties:

(i) (p is It-invariant,

(ii) y? is generically etale, and

(iii) for some (^-invariant proper closed subset T C X^ containing Z^
and the ramification points of X^ —> P1, we have <^(T) H {0,1,00} = 0.

To do this we may assume S affine. Choose a relatively ample line bundle
C on V = X / H over S. Take n so large that (a) the map r(V, C^) -^
r{Ys, (£|yj071) is surjective, (b) there exist si,S2 e I^, (^lyj071) which
define a finite morphism Yg —?• P^, and (c) /^n is very ample on Yrj. If
si,S2 ^ I^y,/;071) are arbitrary lifts of si,52, then there exists an open
neighborhood U = U(s-t,s^) C S of s such that 5i,«2 define a finite
morphism $ : Yu —^ P^. Note that by (c) there exists a nonempty Zariski
open subset V C ^(Y^,£^n)2 such that (51^,52,77) € V implies that ^
is generically etale. However, the set of lifts (51,52) of («i,S2) form a
Zariski dense subset of FC^,/^)2, as is easy to show (use that s ^ rj
as dim 6' > 0).

Let y? : Xu —^ P^- be the resulting morphism Xu —^ Yu —> P^-. We
have (i) and (ii) but not yet (iii); we will get (iii) by changing coordinates
on P^. Let T C X^ be a G-stable closed subset as in (iii). Consider
the group Q = PGL2(r(£/,0[/)). We are looking for an element g e Q
such that g(T) H {0,1,00} = 0. Again this is a Zariski open condition
in PGL2,^. The residue field K,(rj) is infinite as dim S > 0, and it follows
that Q C PGL2(/^(77)) is Zariski dense. Thus we can find g € G having the
desired properties.

3.5. Since S is Noetherian we can choose a finite covering by open
m

affines S == |j Ui such that there are finite morphisms (pi : Xu- —^ P^r
1=1

satisfying (i), (ii) and (iii) of Subsection 3.4. Further we may assume that
on each Ui a prime number ^ ^ 5 is invertible.

Suppose we do a base change by 6" —^ S as in 3.2. The covering
S = \JUi pulls back to a covering 6" = \JU[ and ^ to a morphism
^ : X^, —^ P^, having properties (i), (ii) and (iii) stated in 3.4. Thus
we may assume that R(S) contains a primitive ^th root of unity for each
i. Also S is normal.
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Let Cz —> P]j. be the finite normal covering given by the function
field extension -RpP^-.) C Li obtained by adjoining the ^th roots of x and
x - 1 to -R(P^). By our assumption that Cz^z € r(^,C^) we have that
Ci —>• P^-. is a (ramified) Galois covering with group (Z/^Z)2. More to the
point, the morphism Ci —r Ui is smooth, projective and all its geometric
fibres are nonsingular curves of genus ^ 2.

Let N C R(X)* be the multiplicative subgroup generated by the
following elements:

fi,g=9^W) and f^g = g(^{x - 1)), i = 1,... ,m, g € G.

By our choice of (pi the zeros and poles of these functions /^p, f[ on the
curve Xr) are simple and occur in points p € Xrj \ Z^ with ^(rf) C ^(p)
separable. Set £ equal to the product of the distinct prime numbers that
occur among the £i. Let R{X) C L be the finite Galois extension obtained
by adjoining the £th roots of the elements of N , or equivalently the £th roots
of the f^g, f^g. In fact the extension R{X)° C L is Galois as TV C R(Xy
is G-stable.

Suppose the algebraic closure K of R(S) in L strictly contains R(S).
Let us do a base change 5" —> 5' as in 3.2 with -R(5") = K. This is allowed as
R^S)0 C K is Galois. We replace (pi by its pullback (p[ as above. Repeating
our construction of N and L in the new situation, we see that we have
reached a situation where R(S) is algebraically closed in L.

At this point we let X' be the normalization of the scheme X m L.
We put

G' = G ^G^RW/R{X)O) G^L/R^X)0)

and we see that G' surjects onto G and G' acts on X ' . The curve X^ is
smooth over rj as the morphism X1 —> X^ is generically etale and has only
tame ramification over points p € X^ \ Zrj with K,(rj) C f^(p) separable.
It follows that X^ is geometrically irreducible over rj as ^{rj) = R(S) is
algebraically closed in R{X') = L. In addition Z1 is etale over rj as Z9 —>• Z^
is etale.

Any element h e H fixes all the elements /^, /̂ / , hence its action on
R(X) can be lifted uniquely to an element of Ga^L/J^X)^) fixing all the
£th roots of the functions /^, f[ . This gives an element h' € G' which lies
in Ker(G" —> Aut(S')) and which maps to h. (The author remarks that it
actually wasn't necessary to have the elements /^, f[ to be ff-invariant.)
Finally, it is trivial to see that R(X/)Gf = R^X)0.
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Thus we have shown that (/' : X' -^ S . G ' . Z ' ) satisfies (2.1.1),
(2.1.2), (2.1.3) and (2.1.4), and that (X' -^ X,S -> S) satisfies (2.2.1),
(2.2.5), (2.2.6) and (2.2.7). In other words we have produced an alteration
which is allowed.

We claim that (// : X' -^ S , G ' , Z ' ) satisfies (2.1.6). This we get
from the fact that the homomorphism ̂  : fi(P^.) —> R(X) extends to
a homomorphism Li —> L by construction. By the universal property of
normalization we get a morphism X^ —^ Ci. This morphism is finite as
Xu,, —> P^ is finite. We conclude that any irreducible component C of any
geometric fibre X^ of X/ over S has a finite morphism to the curve C^s if
s C Ui. Thus g(C) ̂  g(C^s) ̂  2.

3.6. We assume (2.1.1), (2.1.3), (2.1.2), (2.1.4) and (2.1.6). Note that
a base change 5" —> S as in 3.2 preserves the condition (2.1.6) as well.
Hence we may assume, after extending R(S), that Zr, = {pi , . . . ,pyj with
^(.Pi) = ^W- Remark that (X^,pi,... ,p^) is a smooth stable n-pointed
curve over 77 in view of (2.1.6).

LEMMA 3.7. — Let S be an excellent scheme with generic point n, let
(X^,pi,... ,pn) be a smooth stable n-pointed curve over 77. There exists
a generically etale alteration S/ —> S such that (Xyy,pi , . . . ,pyi) 0 ^{rf')
extends to a stable n-pointed curve over S1.

Proof. — Compare [1, 4.17] and [1, 5.13]. (In order to get 6" —^ S
generically etale use only level structures prime to the characteristic of
R(S).) D

3.8. We apply the lemma to our stable n-pointed curve (Xyy,pi , . . . ,pn)-
After replacing S by a finite covering as in 3.2 we may assume that
(X^,pi,... ,pn) extends to a stable n-pointed curve on a modification of 5'.
We can dominate this modification by a normal modification 5" on which
G acts [1, 7.6]. Replace X by X' = (X Xs S^red and S by S"; this is an
allowed alteration. In this way we reach a situation where in addition to
(2.1.1), (2.1.3), (2.1.2), (2.1.4) and (2.1.6) we have that S is normal and
the following condition:

(*) There exists a stable Ti-pointed curve (C, o- i , . . . , On) over S with
(X^.Z^)^ (^,01(77),. ..,^(77)).

We remark that the group G acts on (C,ai,.. . ,0n) over S. This is due
to the fact that I = Isom(^*(C, {o- i , . . . , o-yj), (C, {o- i , . . . , On})) is finite
unramified over 5, the scheme S is normal and we have an element of I(rf)
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given by the action of g on (Xrj^Zrj). Here (C, {o- i , . . . ,0^}) denotes the
curve with an non-ordered set of sections.

3.9. Let us look at the scheme

M==Mors(C,X).

It is a disjoint union of schemes quasi-projective over 5, see [5, page 22].
We have a point m^ of M(r]} given by our isomorphism in (*). We define
5" as the closure of rrirj in M. Thus 6" is an integral scheme, 5" —^ S is
birational and quasi-projective.

Claim 3.10. — The morphism 6" —> S is proper.

3.11. If we prove the claim then we are done with the proof of (vii)(a)
of Theorem 2.4. Indeed, the group G acts on C and X over its action on 5,
and hence induces an action of C? on M. The map in (*) is equi variant for
these actions, hence we see that G acts on S ' . Since S ' is quasi-projective
and proper over 5, it is projective over S. The morphism Cs' —^ X obtained
from the map 5" —>• M is birational, G-equivariant and projective as Cs' is
projective over S. Thus the alteration (Cs' — ^ X ^ S ' — ^ S) satisfies all the
conditions listed in 2.2.

3.12 (Proof of Claim 3.10). We prove this by checking the valuative
criterion of properness; we need only consider morphisms T —> 5, where T
is a trait and the generic point $ of T maps to rj e S. (So ^ lifts to S/ as
S" —> S is birational.) Thus we have to prove the lemma below.

LEMMA 3.13. — Let S be a trait, C —> S a semi-stable curve with
smooth generic fibre and X —> S a morphism as in 2.1 that satisfies (2.1.3)
and (2.1.6). Any morphism C^ —> Xrj over rj extends to a morphism C —> X.

Proof. — The case that C^ —>• Xrj is constant is left to the reader.
If not, then R(Xrj) C R(Crj) is finite. We replace X by the normalization
of X in R{C^)\ the conditions (2.1.3) and (2.1.6) still hold. Thus we may
assume that C^ —> Xrj is an isomorphism.

There exists a blow up C —> C of the normal surface C such that
the birational morphism C^ —> Xrj extends to a morphism C —^ X. As
the surface C has only rational singularities (loc. eq. xy — 7T71 = 0) the
exceptional curves of C —^ C are all genus zero curves. Thus they are
contracted to points in X in view of (2.1.6). It follows that the morphism
C -^ X factors as C -^ C -> X. n
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4. Equal genus.

4.1. Assume the triple (/ : X —^ S,G,Z) satisfies (2.1.1), (2.1.3),
(2.1.2) and (2.1.4). By Section 3 there exists an alteration (/' : X' —^
5", G', Z ' ) of (/ : X -> 6', G, Z) that solves case (vii)(a) of Theorem 2.4:

X ' -^ Xv ['4/ ^

s' -^ s.
Thus (^,0) satisfies (2.2.1), (2.2.5), (2.2.4) (2.2.6) and (2.2.7).

Let N C G' be the kernel of the mapping G —> G x Aut S ' . By (2.2.4)
we have that the morphism X' / N —> X X g S ' is birational. The proposition
below shows that X\ = X' / N is a semistable curve over S ' = 5i. The
sections ai give a number of disjoint sections (one for each TV-orbit on
{(TI, . . . ,cryi}), mapping into the smooth locus by Proposition 4.2. The
alteration (Xi -^ Si, G ' / N , Z / N ) -^ (/ : X -^ 5,G,Z) satisfies (2.2.1),
(2.2.5), (2.2.4) and (2.2.7) as follows from the corresponding properties of
('0,^>). The property (2.2.2) follows from the construction. We are done
with the proof of Theorem 2.4 once we have shown Proposition 4.2.

PROPOSITION 4.2. — Let C —> S be a projective semi-stable curve
over an excellent integral normal scheme S. Assume G C Ants(C) is a
finite group of automorphisms ofC over S. The quotient C / G exists and is
a semi-stable curve over S. The map C —> C/G is finite and maps sm(C/S)
into the smooth locus of C/G —>- S.

Proof. — The quotient exists as C is projective over S: any point
of C is contained in a G-stable open affine U of C. The quotient of U by
G is the spectrum of the invariants for G in Y(U^Ou)' The construction
of the quotient commutes with flat base change. (For these assertions one
can consult [5].) Thus to study the local structure of the quotient, we may
assume that S = SpecJ?, where R is a normal Noetherian complete local
domain with algebraically closed residue field. We want to show that C/G
has a local description as in [1, 2.23]. Let x C Cg be a closed point of the
special fibre mapping to y € C/G. Let H C G be the stabilizer of x. Then
(Pc,x)11 = ^c/G,y ^d {Oc.x}11 = OciG.y Thus the local description and
the last assertion of the proposition follow from the lemma below. D

LEMMA 4.3. — Let (-R,m,fc) be a Noetherian complete local ring
which is a normal domain. Let A be an R-algebra isomorphic to either
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(a) R[[u}} or (b) R[[u,v]}/(uv — f) for some / C m . Assume given some
finite group H contained in the automorphism group of A over R. In case
(a) we have A11 ^ R[[x]} and in case (b) we have either A11 ^ R[[x]} or
A ̂  R[[x, y } ] / ( x y — g) for some g e m (in this case g can be taken to be a
power of f).

Proof. — We fix some notations: We set d = #H and Nm : A —^ A11

is the map a ̂  Y[ a(a). The symbol ^>(B) will denote the fraction field
aCH

of the domain B.

Note that A11 is a normal complete local domain with maximal ideal
A11 n TUA and residue field k.

Case I: A ^ R[[v}}. Put x = Nm(^) e A11. It is immediate that
x = ud ' (unit) modulo mA. Hence R[[x}} —> A is a finite injective ring
homomorphism of degree ^ d. It follows that A11 —^ A and R[[x}] —>• A11

are finite. We have ^(^[[.r]]) C <S>(A11) c ^(A). By Galois theory [^(A) :
<S>(A11)} = d, hence ^(^[[o-]]) = ^(A)^ = ^(A^). But R[[x}} is normal,
hence integrally closed in <I>(J?[[:r]]), hence R[[x}} = A11.

Case II: A ^ R[[u, v]}/(uv - f) for some / € m. We get an action of
H on the set of components of Spec A/mA = Spec k[[u^ v}]/(uv). Let HQ be
the subgroup preserving the components. The index [H : HQ\ ^ 2. Below
we will do the case H = HQ\ this reduces us to the case that HQ = {1} and
H = {l,r}. In this case it is easy to see that A ^ R[[u^v]]/(uv — f) with
v = r(u) and A11 = R[[x}} with x = u + r{u).

Case Ha: Here / = 0 and H = HQ. This case follows from Case I as
AH is the fibre product

(A/uA)11 xn(A/vA)11

and the morphisms {A/uA)11 —> R and (A/vA)11 —> R are surjective.

Case lib: Here H = HQ and / € m is not zero. Again let x = Nm(zt)
and y = Nm(^). As H = HQ we have that x = ud - (unit) and y =
vd • (unit) modulo mA. We obviously have xy = fd. Consider the finite
homomorphism of JP-algebras

B = R[[x^ y]]/(xy -fd)-^A= R[[u^ v]}/(uv - f).

As / 7^ 0 both A and B are normal domains. Thus B —^ A is injective in
view of the fact that dim A = dimJ9 = dim I? + 1. We want to compute
[<1>(A) : ̂ (B)}. For any prime ideal p C B we have

[^(A) : ̂ (B)] ^ dim^(p) A 0B /<p).
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We take p = mB + yB, and we have B / p = k[[x}} and ^(p) = A;((.r)). We
compute

A/pA = k[[u,v}}/{uv,y) = k^v^Kuv,^),

as y = vd ' {unit) modulo mA. Thus we get A 0^ ^(p) ^ k({u)), as a
/^(p) = k{(x)) module. We have [k((u)) : k((x))} •==- d as x = ud ' (unit)
modulo mA. Thus we see that [^(A) : ^>(B)} ^ d. Since B C A11 we get
equality of degrees by Galois theory. We get B = A11 from the fact that B
is normal. D

Remark 4.4. — The idea of the proof of the proposition above goes
back to [3, pp. 508-510]. In the case that S has dimension 1 a proof of the
proposition was given by Bas Edixhoven; our proof above closely follows
his.

5. Applications.

Here is an immediate application.

COROLLARY 5.1. — Let S be an excellent scheme of dimension 1. In
this situation [1, Theorem 8.2] holds, i.e., any S-variety X can be altered
into a semi-stable variety over a finite extension S-t of S.

Proof. — This is trivial from Theorem 2.4 and the results of [1].
Indeed, the only problem in the proof of [1, 8.2] was to present X (after
an alteration) as a semi-stable family of curves over an 5-variety whose
dimension is 1 less. However, this is immediate from Theorem 2.4. D

LEMMA 5.2. — Let f : X —> S be a proper morphism of excellent
integral schemes, and let G be a finite group acting on f. Assume that
the generic fibre Xrj of f is geometrically reduced and irreducible and has
dimension d ^ 2. There exists a commutative diagram on which G acts

X' ^ X\- \1-+- -I/

Y -^ 5,

where ̂  is a projective modification, g and h are dominant projective mor-
phisms of integral schemes having geometrically reduced and irreducible
generic fibres and such that g has a generic fibre of dimension 1.
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Proof. — The conditions on / imply that the field extension R(S) C
R(X) is separable. Choose x\^... ,^d-i G R(X)0 which are algebrai-
cally independent over R(S) and such that R(X) is separable over
R{S)(x-^^... ,Xd-i)- This defines a G-equivariant rational map X'-'-^P^"1.
Therefore there is a projective modification X' —> X on which G acts such
that there is a G-equivariant morphism X' —^ P^~1 realizing r. We may
assume that X' is normal.

Let X9 —^ Y —^ P^~1 be the Stein factorization. Note that G acts on Y
and that X' —> Y and Y —>• S are G-equi variant. By construction the field
extension R(Y) C R{X') = R(X) is separable and R(Y) is algebraically
closed in -R(X'). Hence the generic fibre of X' —>• Y is geometrically reduced
and irreducible. In the same way one sees that Y —^ S has geometrically
reduced and irreducible generic fibre, n

Situation 5.3. — Here S is an integral Noetherian scheme, and G
is a finite group acting on S. A Galois alteration of (5, G) is a system
(TT : 5" -^ 5, Q -> G, G' x S ' -^ 6"), where (a) TT : 5" -^ S is an alteration,
(b) G' —^ G is a surjection of finite groups, (c) G' x 5" —^ 5" is an action
of G' on S" such that TT becomes G' equivariant, and (d) we have that
the extension R^S)0 C R(S/)G/ is purely inseparable. Condition (d) is
equivalent to the following: ifH= Ker(G' -^ Aut(5)) then R{S) C R^S^
is purely inseparable.

5.4. Suppose we have a commutative diagram of integral schemes

X/ —> Xi i
S" —> S.

Suppose that G' —> G is a surjection of finite groups and that these act on
the various schemes above. Assume that (X', G') —^ (X, G) and (S", G') —^
(5, G) are Galois alterations. We consider the following condition on this
diagram:

(5.4.1) Let H = Ker(G -^ Aut(5)) and let H ' = Ker(G' ̂  Aut(S")).
Then H ' —> H is surjective.

Suppose that X —^ S has a geometrically irreducible generic fibre. In this
case (5.4.1) implies that the map X' —> (X Xs 5")~ is a Galois alteration
(both with group G'). The notation (X Xs 5")~ refers to the irreducible
component of X Xs 6" dominating 5".
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LEMMA 5.5 — Let f : X —> S be a proper morphism of integral
excellent schemes on which the group G acts. Assume that the generic
fibre of f is geometrically irreducible. Suppose that (X^G') is a Galois
alteration of X. There exists a diagram on which G' acts:

X-^ —> X\ —> 5ii i i
X ' —> X —^ S

such that the generic fibres of X[ —>• S\ and X\ —> 5i are geometrically
irreducible and reduced, such that (5i, G') —> (S, G) is a Galois alteration,
such that X\ is the strict transform of X with respect to Si —> S, and
such that the field extension R(X') C R(X[) is purely inseparable. Finally,
X[ —> X\ is a Galois alteration as well and the diagram 5.4 composed of
X[, X, Si and S satisfies (5.4.1).

Proof. — Let 5" be the normalization of S in a purely inseparable field
extension of R(S) on which the group G acts such that the generic fibres
of (X Xs 5")~ and (X' Xs 5")~ over S ' are geometrically reduced. Here
{X/ Xs S ' ) ^ denotes the irreducible component of X' Xs 5" dominating
5'; this will be our X[. We may replace 5" by 5" and assume that X'^ and
Xr) are geometrically reduced. We may also assume that X' is normal.
Let X/ —> S/ —^ S be the Stein factorization of X' —. S. Note that
G' acts on S ' and that (S^G') —>• (5,G) is a Galois alteration. Indeed,
if H = Ker(G' -^ G), then by assumption R(X) C R{X'}11 is purely
inseparable, hence R(S) C R^S')11 is purely inseparable. Now X ' , is
normal, geometrically reduced and geometrically connected, hence it is
geometrically irreducible. We take Si := S ' and Xi :== (X Xs <S")~. The
verification of the last statement of the lemma is an exercise in Galois
theory that is left to the reader. D

LEMMA 5.6. — Let (5, G) be as in Situation 5.3, with S excellent.
Let {5 i , . . . ,5n} C S be a finite set of points of S, and suppose we are
given a finite separable field extension ^(s^) C ki for each i. There exists
an alteration (TT : 5" —^ 5, G' —> G, G' x S" —^ S") as in 5.3 with TT finite and
generically etale, and such that Tr"1^) = {s^j} C S" where all the field
extensions ^(^) C ^(s^) contain ki.

Proof. — Clear. D

We say that a semi-stable curve X over a field k is quasi-split if (a) its
singular points are rational over fc, and (b) in each of its singular points the
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two tangents are rational over k. This means that 0^^ ^ A;[['m;]]/(m?) for
any singular point x € X. Another formulation: the inverse image under
the normalization mapping X71 —> X of the set of singular points of X
consists of ^-rational points of Xn'. We say a semi-stable curve X —> S
over a scheme S is quasi-split if for all s € S the fibre Xg is a quasi-split
semi-stable curve over ^(s). Compare with [1, 2.22 and 2.23] where split
semi-stable curves are defined; a split semi-stable curve is quasi-split and
a quasi-split semi-stable curve is split only if all its fibres have smooth
components.

LEMMA 5.7. — Let f : X —r S be a, semi-stable curve over an excellent
integral scheme S of finite dimension. Assume the finite group G acts on
f. There exists a Galois alteration (5",G') of (5,G) which is finite and
generically etale such that the pullback X' = X Xs 5" is a quasi-split
semi-stable curve over 5".

Proof. — Let T C S be an irreducible and reduced closed subscheme,
with generic point ^ and assume that X^ is quasi-split. We claim that there
exists a nonempty open subscheme U C T such that X\u is quasi-split over
U. By [2, Section 3] the curve X\y has locally constant topological type
over V for some nonempty open V C T. Over V we can find a morphism
X^- —rX\y such that X^ —>• Xy is the normalization mapping of Xy for
all v C V. Let Y C X^ be the inverse image of Sing(/)|y. Then Y -^ V
is finite etale and Xy is quasi-split if and only if all points of Yy are /^(ir-
rational (see above). But we assumed that X^ is quasi-split, so all points
of Y^ are rational, hence the covering Y —>• V is trivial over a nonempty
open subscheme U C V. This proves the claim.

Let Z C S denote the Zariski closure of the set of points s where
Xg is not quasi-split. By the claim the curve X^ is not quasi-split for any
maximal point $ of Z. Let {si} be the set of all these maximal points and
let K,{si) C ki be finite separable extensions such that Xg^kz is quasi-split.
Apply Lemma 5.6 to this situation: we get TT : 5" —^ S. If Zf C 5" denotes
the Zariski closure of the set of points of 5" where X' is not quasi-split,
then we see that T ^ ( Z ' ) C Z is nowhere dense. Since TT is finite we conclude
dim Z ' < dim Z. We win by induction on this dimension (which is finite as
dim(5) < oo). n

Situation 5.8. — Let (5,6?) be a pair as in 5.3. A G-pluri nodal
fibration of relative dimension d over S is given by a system:

{.Xd—^Xd-\—^... —^X\—>XQ = 5, {o'ij}^ ZQ\
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where

(i) fi: Xi —> X^_i is a projective and quasi-split semi-stable curve over
Xi-i,

(ii) ZQ C S = XQ is a G-stable proper closed subset of 5, and

(iii) 0'ij : Xi-\ —>• Xi, j = 1,... ^rii are disjoint sections of fi into the
smooth locus of Xi over X^_i.

Put

Z^Q^^-i)^1^-!).

J'=l

The data are subject to the condition that X^-i-i —> Xi is smooth over the
locus Xi \ Zi. Furthermore G acts on all Xi such that all the morphisms fi
are G-equi variant, and Vz,j,^, a^ o g == g o a^i for some j ' = j ' { g ^ i).

THEOREM 5.9. — Let f : X —> S be a proper morphism of integral
excellent schemes of finite dimension. Assume that a finite group G acts
on f and that a G-stable proper closed subset Z C X is given. Suppose
the generic fibre X^ of f is geometrically irreducible of dimension d ^ 1.
In this situation there exist:

(i) A projective Galois alteration (5.3) (5i,Gi) of(S,G).

(ii) A G^-pluri nodal fibration {Xd — > . . . — > X\ —> Si,{(7^},Zo) °ver
5i.

(iii) A G^-equivariant alteration ^\ : Xd —> X making the following
diagram commutative

X, ^ X

| fio.-ofd [ /
4- ^

Si —> S.
These will satisfy the following conditions:

(a) The map {Xdi G\) —> (X, G) is a Galois alteration and the diagram
above satisfies (5.4.1). In particular, ifN = Ker(Gi —> Aut(S'i XgX)), then
the morphism Xd/N —^ (X Xs *S'i)^ induces a purely inseparable extension
of functions fields.

(b) We have ^(Z) C Zd. (See Subsection 5.8 for the definition of
Zd C Xd.)
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Proof. — In the case dimXrj = 1 this follows from Theorem 2.4
combined with Lemma 5.7 to "split" the curve. In the general case we
argue by induction on the dimension of X^. First we replace S by the
normalization of S in a purely inseparable extension of its function field
on which G acts such that X^ becomes geometrically reduced. Choose
X' —> Y —^ S as in Lemma 5.2. Then by Theorem 2.4 we find an alteration
(2.2) with group G':

X ' 1 ^ X'v i-4. 4^

v —> y,
having the properties (2.2.1)-(2.2.7) except possibly (2.2.5); in particular
Y ' •—> Y is a Galois alteration. There are sections o-j of g ' adapted to the
inverse image Z ' C X ' o f Z c X, i.e., ̂ (ZQ C Uy ̂ •(^M^)"1^") for
some proper closed subset Z " C Y ' . We enlarge Z " such that it contains
the locus over which X" —> Y ' is not smooth. By Lemma 5.7 we may in
addition assume that g1 is a quasi-split semi-stable curve (this does not
destroy any of the properties). We apply Lemma 5.5 to Y ' —>• Y —> S and
we get Y{ —^ Y\ —>• 5" with an action of G'.

By induction applied to the pair Z'{ C Y[ over 5" with group G' we
get a diagram

^d-l ——> Y[

1 1
5i —. S ' .

We leave it to the reader to show that by taking X^ = X" Xy/ X^-i, we get
a Gi-pluri nodal fibration with all the properties as stated in the theorem.
For example (a) can be seen to be true by noting that we have (a) for all
the rectangles in the following diagram

Xd=Xd-l Xy /X" ——> ——> X" ——> X' ——> Xi i l l
Xd-i — Y{ — Y' -^ Y

1 1 1 1
5i —> S' —> —> S === S.



618 A. JOHAN DE JONG

COROLLARY 5.10. — Let f : X —> S be a dominant and proper
morphism of integral excellent schemes. There exists a diagram

Xd —> Xd—i —> • - - —^ X\ —> S'i

L L
4. •[•

x ———————> s
where '0 and (f) are alterations and fd '- X^ —>• S\ is a composition of
protective semi-stable curve fibrations Xi —^ X^-i. In addition we may
assume a finite group N acts on this diagram, acting trivially on X, S and
S-i, such that R(Xd/N) is a purely inseparable extension of the function
field of the component ofX x s S-\_ it maps onto.

Proof. — First take a finite alteration 6" —> S such that some
irreducible component X' of X Xs S/ dominating 6" is geometrically
irreducible over S ' . Next, apply Theorem 5.9 to /' : X' —> S ' . (Note that
the condition of finite dimensionality was used in the proof of Lemma 5.7
only. However, since we do not require the semi-stable curves to be quasi-
split here, we do not need it. In fact Xd —^ S\ will have all the properties
of an TV-pluri nodal fibration over S\ except for being "quasi-split".) D

PROPOSITION 5.11. — Let (S, G) be as in 5.3 with S regular, and let
D C S be a G-strict normal crossings divisor in S (see [1, 7.1]). Suppose
that f : X —> S is a quasi-split semi-stable curve, smooth over S \ D.
Furthermore, assume the action ofGonS lifts to an action of G to X.
There exists a G-equivariant protective modification X\ —^ X with the
following properties:

(i) The scheme X\ is regular and the center of X\ —> X is contained in
Sing(X). The inverse image ofD in X\ is a normal crossings divisor.

(ii) Let o - i , . . . , o-n be disjoint sections into the smooth locus of X —> S
which are permuted by the action of G. Then these lift to sections <7i of
/i : Xi —^ S, and the divisor D\ := \Jo-i(S) U f^(D) is a G-invariant

i
normal crossings divisor of X\. There is a canonical blow up b : X^ —> X\
such that X^ is regular and D^ = b~l(D^) is a G-strict normal crossings
divisor in X^.

Proof. — Consider the blow ups that occur in the proof of [1, Lemma
3.2]. Let T c X be as in [1, 3.4]. Then T-^Di as / is quasi-split. As D
is G'-strict, we have T ' = (J g{T) is a disjoint union of irreducible closed

g^G
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subschemes of the type described in [1, 3.4]. Hence the blow up in the closed
subscheme Tf can be described locally as in [1, 3.4]. Thus we may assume
that X —> S is quasi-split semi-stable and codim(Sing(X),X) ^ 3.

The rest of our argument is similar to the arguments of [1, 4.24-4.28]
and [1, 7.16]. The types of complete local rings that we have now are

A[[u,v\}/(uv-t^ • ...-Q,

where A is a regular complete local ring with a regular system of parameters
t i , . . . , td-i, and D is given by i\ - . . . • tr = 0, for some l ^ s ^ r ^ d — 1.

We give the argument that proves that the blow ups that occur in
the proof of [1, 4.26 and 4.27] can be made G-equivariantly. Indeed, by
the remarks at the end of [1, 3.5] we have Sing(X) = \jEa, with Ea
regular and mapping finite etale onto an irreducible component of some
Di H Dj. However, since / is quasi-split and Ea C Sing(/) this morphism
induces trivial residue field extensions, hence Ea maps isomorphically onto
a component of Di D Dj. Furthermore, if Ea and E^ have the same image
in 5, then Ea H E^ = 0. Thus, as D is G-strict, we have that |j g(Ea)

gcQ
is a disjoint union of components E^. Thus the last sentence of [1, 4.25]
should be replaced with: Any G-orbit of a component of the singular locus
of X is nonsingular.

Thus we blow up in orbits of components of the singular locus of X.
The resulting scheme has a local description as above by the computations
of [1, 4.27]. Hence we arrive at a regular scheme X' with an action of G
and a G-stable normal crossings divisor D' C X ' .

If we are given sections ai as in (ii) then these lift to sections a\
into X\ = X' (as we modified only in singular loci) and the divisor
D\ = D/[^o'^{S) is a normal crossings divisor as well. To get D\ to be
G-strict we apply the canonical blow up of [1, 7.2]. D

5.12. We consider the following condition on a pair (6', G) as in 5.3:

(5.12.1) For every Galois alteration (5",G') of (5',G) and proper
closed subset Z ' C 5", there exists a Galois alteration (5i,Gi) of
(S", G'), such that 5'i is regular and such that the inverse image of Z '
in S'i is contained in a Gi-strict normal crossings divisor.

THEOREM 5.13. — Let S be an integral excellent scheme of finite
dimension. Let X be an integral scheme and let f : X —>• S be a dominant
morphism on which the finite group G acts. Assume (5, G) satisfies (5.12.1).
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Iff is of finite type, is separated and has geometrically irreducible generic
fibre then the pair (X, G) satisfies (5.12.1).

Proof. — This is just a combination of the results obtained so far.
First, we can assume that X is proper over S by the usual arguments: first
make X quasi-projective by a G-equivariant Chow's lemma (use Chow's
lemma and argue as in [1, 7.6]). To make X projective over S, take an
embedding i : X -^ P^ and let X be the closure of i' : X -^ (P71 x ... x P71)^
where i\x) = ]~[ i{gx)\ G acts on X. If the theorem holds for (X, G), then

gee
it holds for X.

Let (X', G') be a Galois alteration of the pair (X, G) and let Z ' C X'
be a proper closed subset. By Lemma 5.5 we reduce to a situation where
X = X' —> S has geometrically irreducible (and reduced) generic fibre.

By Theorem 5.9 we may assume that X —> S is a G-pluri nodal
fibration of relative dimension d, i.e., X = Xd —> X^-i —> . . . —>- Xi —^ S
and that Z = Zd- Next, by (5.12.1) for 5, we may assume that S is
regular and that Zo C S is a G-strict normal crossings divisor. Then by
Proposition 5.11 applied to Xi —> S we may assume that X is a split
G-pluri nodal fibration of relative dimension d — 1 over a regular scheme
X[ whose associated closed subset is a G-strict normal crossings divisor
Z[ C X[. Apply Proposition 5.11 to the split semi-stable family of curves
over X{, etc. n

COROLLARY 5.14. — Any integral scheme separated, flat and of finite
type over SpecZ has resolution of singularities up to quotient singularities.

COROLLARY 5.15. — Any integral scheme X separated and of finite
type over an excellent scheme S with dim5' ^ 2 satisfies (5.12.1) with
G = {1}. In particular the singularities ofX can be resolved up to quotient
singularities and a purely inseparable extension of R(X).

Proof. — We can find a finite morphism S" —>• S of an integral
scheme 6" to S', and a finite alteration X' —> X with purely inseparable
function field extension such that X' is a scheme over 5" with geometrically
irreducible geometric fibre. Since dim 5" ^ 2, we have canonical resolution
of singularities for S ' [4] and any alteration of S", and hence we get (5.12.1)
for S". By the theorem we get (5.12.1) for X'. This implies (5.12.1) for X
as R(X) C -R(X') is purely inseparable, n

Remark 5.16. — A word about the hypothesis of excellency that
is used throughout. Undoubtedly, in several places this hypothesis is too
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strong and one could get away with working over Noetherian (universally)
Japanese base schemes. However, in some cases one can establish a result
similar to the results in the text by the techniques of EGA IV §8. For
example let us do this for Theorem 5.9. Suppose / : X —> S is a
proper dominant morphism of finite presentation of integral schemes with
geometrically irreducible generic fibre, with S affine and with a finite group
G acting on /. We have f = fo x ids for some G-equivariant morphism
S —> So and some proper dominant morphism fo : XQ —> SQ of integral
schemes of finite type over SpecZ with geometrically irreducible generic
fibre endowed with an action of G. We apply Theorem 5.9 to /o- This gives
a group GI surjecting onto G, and Gi-equi variant maps Xd,o —> Si,o —> So
and Xdft -^ XQ. Put Si = S^o x^ S and Xd = Xd,o x^ S. Then Xd -> 5i
is a Gi-pluri nodal fibration over 61. The morphisms 5i —^ S and Xd —)> X
are "alterations" in the sense that they are of finite presentation, proper
and finite flat over an open dense subscheme. If S is Noetherian, then we
can replace S'i by the reduction of 5i and we get the result of Theorem 5.9
in this situation.
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