We consider the space of binary forms of degree denoted by . We will show that every polynomial automorphism of which commutes with the linear -action and which maps the variety of forms with pairwise distinct zeroes into itself, is a multiple of the identity on .
Soit l’espace des formes binaires de degré . Nous montrons que chaque automorphisme polynomial de qui commute avec l’action linéaire de et qui conserve la variété des formes avec racines deux à deux distinctes, est un multiple scalaire de l’identité sur .
@article{AIF_1997__47_2_585_0, author = {Kurth, Alexandre}, title = {${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms}, journal = {Annales de l'Institut Fourier}, pages = {585--597}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {2}, year = {1997}, doi = {10.5802/aif.1574}, zbl = {0974.14033}, mrnumber = {98e:14049}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1574/} }
TY - JOUR AU - Kurth, Alexandre TI - ${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms JO - Annales de l'Institut Fourier PY - 1997 SP - 585 EP - 597 VL - 47 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1574/ DO - 10.5802/aif.1574 LA - en ID - AIF_1997__47_2_585_0 ER -
%0 Journal Article %A Kurth, Alexandre %T ${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms %J Annales de l'Institut Fourier %D 1997 %P 585-597 %V 47 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1574/ %R 10.5802/aif.1574 %G en %F AIF_1997__47_2_585_0
Kurth, Alexandre. ${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms. Annales de l'Institut Fourier, Volume 47 (1997) no. 2, pp. 585-597. doi : 10.5802/aif.1574. https://aif.centre-mersenne.org/articles/10.5802/aif.1574/
[1] Braids and Permutations, Ann. Math., 48 (1947), 643-649. | MR | Zbl
,[2] Algebraic Geometry, GTM, 52, Springer-Verlag, Berlin-New York (1977). | MR | Zbl
,[3] Local Properties of Algebraic Group Actions, In : H. Kraft, P. Slodowy, T.A. Springer : Algebraische Transformations-gruppen und Invariantentheorie, Algebraic Transformation Groups and Invariant Theory, DMV Seminar Band, 13, Birkhäuser (1989), 63-75. | MR | Zbl
, , , ,[4] The Picard Group of a G-Variety, In : H. Kraft, P. Slodowy, T.A. Springer : Algebraische Transformationsgruppen und Invarianten-theorie, Algebraic Transformation Groups and Invariant Theory, DMV Seminar Band, 13, Birkhäuser (1989), 77-87. | MR | Zbl
, , ,[5] Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, D1, Vieweg (1985). | Zbl
,[6] Klassische Invariantentheorie : Eine Einführung, In : H. Kraft, P. Slodowy, T.A. Springer : Algebraische Transformationsgruppen und Invarianten-theorie, Algebraic Transformation Groups and Invariant Theory, DMV Seminar Band, 13, Birkhäuser (1989), 41-62. | MR | Zbl
,[7] Algebraic Automorphisms of Affine Space, In : “Topological Methods in Algebraic Transformation Groups” ; Progress in Mathematics, vol. 80, Birkhäuser Verlag Boston Basel Berlin (1989), 81-105. | MR | Zbl
,[8] Reductive Group Actions with one-dimensional Quotient, Publ. Math. IHES, 76 (1992). | Numdam | MR | Zbl
, ,[9] Equivariant Polynomial Automorphisms, Ph.D. Thesis Basel (1996).
,[10] Around the 13th Hilbert Problem for Algebraic Functions, Israel Mathematical Conference Proceedings, vol. 9 (1996), 307-327. | MR | Zbl
,[11] Slices étales, Bull. Soc. Math. France, Mémoire, 33 (1973), 81-105. | EuDML | Numdam | MR | Zbl
,[12] Cohomologie Galoisienne, Lecture Notes in Math., 5, Springer-Verlag, Berlin New York (1964). | Zbl
,[13] Local Fields, GTM, 67, Springer-Verlag, Berlin New York (1979). | Zbl
,[14] Algebraic Topology, Springer-Verlag, Berlin New York (1966). | MR | Zbl
,[15] The Classical Groups, Their Invariants and Representations, 2nd., ed., Princeton Univ. Press, Princeton, N.J., 1946.
,Cited by Sources: