In this paper we prove that the projective dimension of is , where is the ring of polynomials in variables with complex coefficients, and is the module generated by the columns of a matrix which arises as the Fourier transform of the matrix of differential operators associated with the regularity condition for a function of quaternionic variables. As a corollary we show that the sheaf of regular functions has flabby dimension , and we prove a cohomology vanishing theorem for open sets in the space of quaternions. We also show that , for and and we use this result to show the removability of certain singularities of the Cauchy–Fueter system.
Soit l’anneau des polynômes de variables. Soit la transformation de Fourier de la matrice d’opérateurs différentiels associée à la condition de régularité imposée à une fonction de variables quaternioniques, et le module défini par les colonnes de . Dans cet article nous prouvons que la dimension projective du module est . Nous prouvons ensuite, comme corollaire, que la dimension flasque du faisceau des fonctions régulières est , et que certains groupes de cohomologie sont nuls pour les ouverts de l’espace de quaternions. Nous démontrons que pour et que , et nous utilisons ce résultat pour prouver que certaines singularités du système de Cauchy-Fueter peuvent être éliminées.
@article{AIF_1997__47_2_623_0, author = {Adams, William W. and Loustaunau, Philippe and Palamodov, Victor P. and Struppa, Daniele C.}, title = {Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring}, journal = {Annales de l'Institut Fourier}, pages = {623--640}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {2}, year = {1997}, doi = {10.5802/aif.1576}, zbl = {0974.32005}, mrnumber = {98f:32013}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1576/} }
TY - JOUR AU - Adams, William W. AU - Loustaunau, Philippe AU - Palamodov, Victor P. AU - Struppa, Daniele C. TI - Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring JO - Annales de l'Institut Fourier PY - 1997 SP - 623 EP - 640 VL - 47 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1576/ DO - 10.5802/aif.1576 LA - en ID - AIF_1997__47_2_623_0 ER -
%0 Journal Article %A Adams, William W. %A Loustaunau, Philippe %A Palamodov, Victor P. %A Struppa, Daniele C. %T Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring %J Annales de l'Institut Fourier %D 1997 %P 623-640 %V 47 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1576/ %R 10.5802/aif.1576 %G en %F AIF_1997__47_2_623_0
Adams, William W.; Loustaunau, Philippe; Palamodov, Victor P.; Struppa, Daniele C. Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring. Annales de l'Institut Fourier, Volume 47 (1997) no. 2, pp. 623-640. doi : 10.5802/aif.1576. https://aif.centre-mersenne.org/articles/10.5802/aif.1576/
[1] Regular Functions of Several Quaternionic Variables and the Cauchy-Fueter Complex, to appear in J. of Complex Variables. | Zbl
, , , , and ,[2] An Introduction to Gröbner Bases, Graduate Studies in Mathematics, Vol. 3, American Mathematical Society, Providence, (RI), 1994. | MR | Zbl
and ,[3] Ideals defined by matrices, and a certain complex associated to them, Proc. Royal Soc., 269 (1962), 188-204. | Zbl
and ,[4] Commutative Algebra with a View Toward Algebraic Geometry, Springer Verlag, New York (NY), 1994. | Zbl
,[5] Sheaves of quaternionic hyperfunctions and microfunctions, Compl. Var. Theory and Appl., 24 (1994), 161-184. | MR | Zbl
, , ,[6] Relative Cohomology of Sheaves of Solutions of Differential Equations, Springer LNM, 287 (1973), 192-261. | MR | Zbl
,[7] Faisceaux sur des variétés analytiques réelles, Bull. Soc. Math. France, 85 (1957), 231-237. | Numdam | MR | Zbl
,[8] Linear Differential Operators with Constant Coefficients, Springer Verlag, New York, 1970. (English translation of Russian original, Moscow, 1967.) | Zbl
,[9] An Introduction to Homological Algebra, Academic Press, New York, 1979. | MR | Zbl
,[10] Microfunctions and Pseudo-Differential Equations, Springer LNM, 287 (1973), 265-529. | MR | Zbl
, , and ,Cited by Sources: