@article{AIF_1993__43_5_1311_0, author = {Baouendi, M. S. and Rothschild, L. P.}, title = {Harmonic functions satisfying weighted sign conditions on the boundary}, journal = {Annales de l'Institut Fourier}, pages = {1311--1318}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {43}, number = {5}, year = {1993}, doi = {10.5802/aif.1375}, zbl = {0804.35029}, mrnumber = {95c:35067}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1375/} }
TY - JOUR TI - Harmonic functions satisfying weighted sign conditions on the boundary JO - Annales de l'Institut Fourier PY - 1993 DA - 1993/// SP - 1311 EP - 1318 VL - 43 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1375/ UR - https://zbmath.org/?q=an%3A0804.35029 UR - https://www.ams.org/mathscinet-getitem?mr=95c:35067 UR - https://doi.org/10.5802/aif.1375 DO - 10.5802/aif.1375 LA - en ID - AIF_1993__43_5_1311_0 ER -
Baouendi, M. S.; Rothschild, L. P. Harmonic functions satisfying weighted sign conditions on the boundary. Annales de l'Institut Fourier, Volume 43 (1993) no. 5, pp. 1311-1318. doi : 10.5802/aif.1375. https://aif.centre-mersenne.org/articles/10.5802/aif.1375/
[1] Boundary behavior of certain holomorphic maps, Michigan Math. J., 38 (1991), 117-128. | MR | Zbl
,[2] A weak Hopf Lemma for holomorphic mappings, preprint. | Zbl
,[3] Unique continuation and regularity at the boundary for holomorphic functions, Duke J. Math., 61 (1990), 635-653. | MR | Zbl
, , ,[4] Unique continuation and a Schwarz reflection principle for analytic sets, Comm. P.D.E., 18 (1993), 1961-1970. | MR | Zbl
and ,[5] A local Hopf lemma and unique continuation for harmonic functions, Duke J. Math., Inter. Research Notices, 71 (1993), 245-251. | MR | Zbl
and ,[6] A C∞ Schwarz reflection principle in one and several complex variables, J. Diff. Geom., 32 (1990), 889-915. | MR | Zbl
and ,[7] A unique continuation problem for holomorphic mappings, Comm. P.D.E., 18 (1993), 241-263. | MR | Zbl
and ,[8] Partial differential equations of elliptic type, Ergeb.Math. Grenzgeb. (n.F.), 2, Springer-Verlag, Berlin, 1970. | MR | Zbl
,[9] Théorie des distributions, Hermann, Paris, 1966.
,[10] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton NJ, 1970. | MR | Zbl
,Cited by Sources: