Necessary topological conditions are given for the closed CR embedding of a CR manifold into a Stein manifold or into a complex projective space.
On donne des conditions topologiques nécessaires pour l’immersion d’une variété CR dans un espace de Stein ou dans un espace projectif complexe
@article{AIF_1993__43_2_459_0, author = {Hill, C. Denson and Nacinovich, Mauro}, title = {The topology of {Stein} {CR} manifolds and the {Lefschetz} theorem}, journal = {Annales de l'Institut Fourier}, pages = {459--468}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {2}, year = {1993}, doi = {10.5802/aif.1340}, zbl = {0782.32015}, mrnumber = {94d:32012}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1340/} }
TY - JOUR AU - Hill, C. Denson AU - Nacinovich, Mauro TI - The topology of Stein CR manifolds and the Lefschetz theorem JO - Annales de l'Institut Fourier PY - 1993 SP - 459 EP - 468 VL - 43 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1340/ DO - 10.5802/aif.1340 LA - en ID - AIF_1993__43_2_459_0 ER -
%0 Journal Article %A Hill, C. Denson %A Nacinovich, Mauro %T The topology of Stein CR manifolds and the Lefschetz theorem %J Annales de l'Institut Fourier %D 1993 %P 459-468 %V 43 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1340/ %R 10.5802/aif.1340 %G en %F AIF_1993__43_2_459_0
Hill, C. Denson; Nacinovich, Mauro. The topology of Stein CR manifolds and the Lefschetz theorem. Annales de l'Institut Fourier, Volume 43 (1993) no. 2, pp. 459-468. doi : 10.5802/aif.1340. https://aif.centre-mersenne.org/articles/10.5802/aif.1340/
[1] The Lefschetz theorem on hyperplane sections, Ann. Math., 69 (1959), 713-717. | MR | Zbl
and ,[2] A necessary condition for global Stein immersion of compact CR manifolds, to appear in Riv. Mat. Parma. | Zbl
and ,[3] An Introduction to Complex Analysis in Several Complex Variables, Van Nostrand, Princeton, 1966. | Zbl
,[4] Morse Theory, Ann. Math. Studies, Princeton, 51 (1963). | Zbl
,Cited by Sources: