We are interested in permutations preserving certain distribution properties of sequences. In particular we consider -uniformly distributed sequences on a compact metric space , 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group . We show that is big in the sense that the Cesàro mean is characterized by its invariance under the Lévy group. As a result, any -invariant positive normalized linear functional on is an extension of Cesàro means. Finally we prove that there exist -invariant extensions of Cesàro mean to all of .
Nous considérons les permutations de qui conservent la -répartition des suites ou la densité des parties de ou la somme de Cesàro des suites sommables, et montrons que le groupe (resp. semi-groupe) de ces permutations sont les mêmes. Il est prouvé qu’il y a des fonctionnelles de qui sont invariantes sous l’action du groupe de Lévy et que toutes ces fonctionnelles sont des extensions de la somme de Cesàro.
@article{AIF_1991__41_3_665_0, author = {Bl\"umlinger, M. and Obata, N.}, title = {Permutations preserving {Ces\`aro} mean, densities of natural numbers and uniform distribution of sequences}, journal = {Annales de l'Institut Fourier}, pages = {665--678}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {3}, year = {1991}, doi = {10.5802/aif.1269}, zbl = {0735.11004}, mrnumber = {92j:43002}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1269/} }
TY - JOUR AU - Blümlinger, M. AU - Obata, N. TI - Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences JO - Annales de l'Institut Fourier PY - 1991 SP - 665 EP - 678 VL - 41 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1269/ DO - 10.5802/aif.1269 LA - en ID - AIF_1991__41_3_665_0 ER -
%0 Journal Article %A Blümlinger, M. %A Obata, N. %T Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences %J Annales de l'Institut Fourier %D 1991 %P 665-678 %V 41 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1269/ %R 10.5802/aif.1269 %G en %F AIF_1991__41_3_665_0
Blümlinger, M.; Obata, N. Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences. Annales de l'Institut Fourier, Volume 41 (1991) no. 3, pp. 665-678. doi : 10.5802/aif.1269. https://aif.centre-mersenne.org/articles/10.5802/aif.1269/
[C] Permutations des entiers et répartition des suites, Publ. Math. Orsay (Univ. Paris XI, Orsay), 86-1 (1986), 25-39. | MR | Zbl
,[K] Invariant extensions of linear functionals, Pacific J. Math., 14 (1954), 37-46. | MR | Zbl
, Jr.,[KN] Uniform distribution of sequences Wiley, New York, 1974. | MR | Zbl
, ,[L] Problèms Concretes d'Analyse Fonctionelle, Gauthier-Villars, Paris, 1951. | Zbl
,[O1] A note on certain permutation groups in the infinite dimensional rotation groups, Nagoya Math. J., 109 (1988), 91-107. | MR | Zbl
,[O2] Density of natural numbers and the Lévy group J. Number Theory, 30 (1988), 288-297. | MR | Zbl
,[P] Amenability, A.M.S., Providence, 1988. | MR | Zbl
,[R] Eine Charakterisierung gleichverteilter Folgen, Arch. Math., 32 (1979), 185-188. | MR | Zbl
,[S] On Levi's duality between permutations and convergent series J. London Math. Soc., (2) 34 (1986), 67-80. | MR | Zbl
,Cited by Sources: