We are interested in permutations preserving certain distribution properties of sequences. In particular we consider -uniformly distributed sequences on a compact metric space , 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group . We show that is big in the sense that the Cesàro mean is characterized by its invariance under the Lévy group. As a result, any -invariant positive normalized linear functional on is an extension of Cesàro means. Finally we prove that there exist -invariant extensions of Cesàro mean to all of .
Nous considérons les permutations de qui conservent la -répartition des suites ou la densité des parties de ou la somme de Cesàro des suites sommables, et montrons que le groupe (resp. semi-groupe) de ces permutations sont les mêmes. Il est prouvé qu’il y a des fonctionnelles de qui sont invariantes sous l’action du groupe de Lévy et que toutes ces fonctionnelles sont des extensions de la somme de Cesàro.
@article{AIF_1991__41_3_665_0,
author = {Bl\"umlinger, M. and Obata, N.},
title = {Permutations preserving {Ces\`aro} mean, densities of natural numbers and uniform distribution of sequences},
journal = {Annales de l'Institut Fourier},
pages = {665--678},
year = {1991},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {41},
number = {3},
doi = {10.5802/aif.1269},
zbl = {0735.11004},
mrnumber = {92j:43002},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1269/}
}
TY - JOUR AU - Blümlinger, M. AU - Obata, N. TI - Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences JO - Annales de l'Institut Fourier PY - 1991 SP - 665 EP - 678 VL - 41 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1269/ DO - 10.5802/aif.1269 LA - en ID - AIF_1991__41_3_665_0 ER -
%0 Journal Article %A Blümlinger, M. %A Obata, N. %T Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences %J Annales de l'Institut Fourier %D 1991 %P 665-678 %V 41 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1269/ %R 10.5802/aif.1269 %G en %F AIF_1991__41_3_665_0
Blümlinger, M.; Obata, N. Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences. Annales de l'Institut Fourier, Tome 41 (1991) no. 3, pp. 665-678. doi: 10.5802/aif.1269
[C] , Permutations des entiers et répartition des suites, Publ. Math. Orsay (Univ. Paris XI, Orsay), 86-1 (1986), 25-39. | Zbl | MR
[K] , Jr., Invariant extensions of linear functionals, Pacific J. Math., 14 (1954), 37-46. | Zbl | MR
[KN] , , Uniform distribution of sequences Wiley, New York, 1974. | Zbl | MR
[L] , Problèms Concretes d'Analyse Fonctionelle, Gauthier-Villars, Paris, 1951. | Zbl
[O1] , A note on certain permutation groups in the infinite dimensional rotation groups, Nagoya Math. J., 109 (1988), 91-107. | Zbl | MR
[O2] , Density of natural numbers and the Lévy group J. Number Theory, 30 (1988), 288-297. | Zbl | MR
[P] , Amenability, A.M.S., Providence, 1988. | Zbl | MR
[R] , Eine Charakterisierung gleichverteilter Folgen, Arch. Math., 32 (1979), 185-188. | Zbl | MR
[S] , On Levi's duality between permutations and convergent series J. London Math. Soc., (2) 34 (1986), 67-80. | Zbl | MR
Cité par Sources :



