En utilisant à la fois la théorie des polynômes orthogonaux et des arguments élémentaires de géométrie des nombres, nous donnons ici des nouveaux encadrements pour le diamètre transfini entier d’un intervalle d’extrémités rationnelles. Ces encadrements dépendent explicitement de la longueur de et des dénominateurs de ses extrémités.
Some new upper and lower bound for the least deviation from zero of integral polynomials over intervals with rational extremities are given. These bounds, obtained combining the theory of orthogonal polynomials with elementary arguments from the geometry of numbers, explicitly depend on the diameter of and on the denominators of its extremities.
@article{AIF_1990__40_4_885_0, author = {Amoroso, Francesco}, title = {Sur le diam\`etre transfini entier d'un intervalle r\'eel}, journal = {Annales de l'Institut Fourier}, pages = {885--911}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {4}, year = {1990}, doi = {10.5802/aif.1240}, mrnumber = {1096596}, zbl = {0713.41004}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1240/} }
TY - JOUR AU - Amoroso, Francesco TI - Sur le diamètre transfini entier d'un intervalle réel JO - Annales de l'Institut Fourier PY - 1990 SP - 885 EP - 911 VL - 40 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1240/ DO - 10.5802/aif.1240 LA - fr ID - AIF_1990__40_4_885_0 ER -
%0 Journal Article %A Amoroso, Francesco %T Sur le diamètre transfini entier d'un intervalle réel %J Annales de l'Institut Fourier %D 1990 %P 885-911 %V 40 %N 4 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1240/ %R 10.5802/aif.1240 %G fr %F AIF_1990__40_4_885_0
Amoroso, Francesco. Sur le diamètre transfini entier d'un intervalle réel. Annales de l'Institut Fourier, Tome 40 (1990) no. 4, pp. 885-911. doi : 10.5802/aif.1240. https://aif.centre-mersenne.org/articles/10.5802/aif.1240/
[A1] Metodos para el calculo approximado de la desviacion diopantea uniforme minima a cero en un segmento, Revista Matematica Hispano-Americana, 4 Serie, t. XXXVIII, No 6 (1978), 259-270.
,[A2] New bounds for the uniform Diophantine deviation from zero in [0,1] and [0,1/4], Proceedings of the sixth conference of Portuguese and Spanish mathematiciens, Part I (Santander 1979), 289-291. | MR | Zbl
,[C] Number Theoretic Applications of Polynomials with Rational Coefficients Defined by Extremality Conditions, Arithmetic and Geometry, Vol. I, ed. M. Artin and J. Tate, Birkhäuser. Progress in Math. 35, 1983, 61-105. | MR | Zbl
,[F] Approximation by polynomials with integral coefficients, AMS, Providence, 1980. | Zbl
,[HW] An introduction to the theory of numbers, 5e édition, Oxford University Press, 1984.
and ,[L1] Calculs explicites de constantes de Lehmer, Sém. Th. élém. et Anal. des Nombres 1986/1987, Publ. math. d'Orsay, 52-67. | MR | Zbl
,[L2] Solution et histoire d'un problème de Favard, Séminaire de Théorie des Nombres, Paris, 1986/1987, éd. C. Goldstein, Birkhäuser, Progress in Math., 75 (1989), 221-269. | MR | Zbl
,[N1] On Chebyshev-type inequality for primes, The American Mathematical Monthly, 89, No 2 (1982), 126-129. | MR | Zbl
,[N2] A new method in elementary prime number theory, J. London Math. Soc., (2), 25 (1982), 385-391. | MR | Zbl
,[R] Diamètre transfini et mesures d'irrationalité des logarithmes, Communication personnelle.
,[Sa] Function with integral parameters, deviating the last from zero (en russe), Leningrad. Gos. Univ. Ucen. Zap., Ser. Mat. Nauk, 111 (1949), 32-46.
,[S] Orthogonal polynomials, AMS, Providence, 1975.
,[T] Approximations of functions with Diophantine conditions by polynomials with integral coefficients (en russe), Metric questions of the theory of functions and mappings, Naukova Dumka Publishing House, Kiev, No. 2 (1971), 267-333. | MR | Zbl
,Cité par Sources :