We prove an estimate of the kind , where , is the scattering amplitude related to the compactly supported potential at a fixed energy level const., , and is a suitably defined norm.
Nous prouvons une estimation du type , où , est l’amplitude de “scattering” relative au potentiel à support compact à un niveau d’énergie fixée const., où , et est une norme définie.
@article{AIF_1990__40_4_867_0, author = {Stefanov, Plamen}, title = {Stability of the inverse problem in potential scattering at fixed energy}, journal = {Annales de l'Institut Fourier}, pages = {867--884}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {4}, year = {1990}, doi = {10.5802/aif.1239}, zbl = {0715.35082}, mrnumber = {92d:35217}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1239/} }
TY - JOUR AU - Stefanov, Plamen TI - Stability of the inverse problem in potential scattering at fixed energy JO - Annales de l'Institut Fourier PY - 1990 SP - 867 EP - 884 VL - 40 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1239/ DO - 10.5802/aif.1239 LA - en ID - AIF_1990__40_4_867_0 ER -
%0 Journal Article %A Stefanov, Plamen %T Stability of the inverse problem in potential scattering at fixed energy %J Annales de l'Institut Fourier %D 1990 %P 867-884 %V 40 %N 4 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1239/ %R 10.5802/aif.1239 %G en %F AIF_1990__40_4_867_0
Stefanov, Plamen. Stability of the inverse problem in potential scattering at fixed energy. Annales de l'Institut Fourier, Volume 40 (1990) no. 4, pp. 867-884. doi : 10.5802/aif.1239. https://aif.centre-mersenne.org/articles/10.5802/aif.1239/
[A] Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172. | MR | Zbl
,[EMOT] Higher Transcendental Functions, Vol. 2, McGraw Hill, New York, 1953. | MR | Zbl
, , and ,[L] Zur Monotonie der Eigenwerte selbstadjungierter elliptischer Differentialgleichungen, Math. Z., 96 (1967), 26-32. | MR | Zbl
,[M] Grundprobleme der Mathematischen Theorie Elektromagnetischer Schwingungen, Springer, 1957. | Zbl
,[Na1] Reconstruction from boundary measurements, Ann. Math., 128 (1988), 531-576. | MR | Zbl
,[Na2] Exact reconstruction procedures for some inverse scattering and inverse boundary problems, Meeting on inverse problems, Montpellier, 1989.
,[NSU] An n-dimensional Borg-Levison theorem, Comm. Math. Physics, 115 (1988), 595-605. | MR | Zbl
, and ,[NO] Multidimensional inverse spectral problems for the equation - Δѱ + (v(x) - Eu(x))ѱ = 0, Funkt. Analizi i Ego Prilozheniya, 22 (4) (1988), 11-12; Translation in Funct. Anal. and its Appl., 22 (4) (1988), 263-272. | MR | Zbl
,[R] Recovery of the potential from fixed energy scattering data, Inverse Probl., 4 (1988), 877-886. | MR | Zbl
,[RS] Methods of Modern Mathematical Physics, IV, Accademic Press, New York, 1978. | Zbl
and ,[S] Schrödinger semigroups, Bull. A.M.S., 7 (3) (1982), 447-526. | MR | Zbl
,[SU1] A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math., 39 (1986), 91-112. | MR | Zbl
and ,[SU2] A global uniqueness theorem for an inverse boundary value problem. Ann. Math., 125 (1987), 153-169. | MR | Zbl
and ,[SU3] Inverse boundary value problem at the boundary - continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197-221. | MR | Zbl
and ,[SU4] The Dirichlet to Neumann map and its applications, Proceedings of meeting in Arcata, California on inverse problems, July 29-August 4, 1989. | Zbl
and ,Cited by Sources: