Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability
Annales de l'Institut Fourier, Tome 40 (1990) no. 1, pp. 213-236.

On donne des conditions suffisantes pour que deux difféomorphismes, qui sont égaux sur une même variété invariante V et dont les dérivées dans la direction normale sont aussi égales, soit conjugués ; on obtient en plus que l’homéomorphisme conjuguant h satisfait des inégalités supplémentaires. Ces inégalités, qui impliquent l’existence de la dérivée normale de h le long de V, servent à étendre cette conjugaison dans des régions où il y a des modules de stabilité.

We give sufficient conditions for the conjugacy of two diffeomorphisms coinciding on a common invariant submanifold V and with equal normal derivative; moreover we obtain that the homeomorphism h realizing this conjugacy satisfies additional inequalities. These inequalities, implying also the existence of the normal derivative of h along V, serve to extend this conjugacy towards regions where moduli of stability are present.

@article{AIF_1990__40_1_213_0,
     author = {Bonckaert, Patrick},
     title = {Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability},
     journal = {Annales de l'Institut Fourier},
     pages = {213--236},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {40},
     number = {1},
     year = {1990},
     doi = {10.5802/aif.1211},
     zbl = {0681.58022},
     mrnumber = {91e:58086},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1211/}
}
TY  - JOUR
AU  - Bonckaert, Patrick
TI  - Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability
JO  - Annales de l'Institut Fourier
PY  - 1990
SP  - 213
EP  - 236
VL  - 40
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1211/
DO  - 10.5802/aif.1211
LA  - en
ID  - AIF_1990__40_1_213_0
ER  - 
%0 Journal Article
%A Bonckaert, Patrick
%T Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability
%J Annales de l'Institut Fourier
%D 1990
%P 213-236
%V 40
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1211/
%R 10.5802/aif.1211
%G en
%F AIF_1990__40_1_213_0
Bonckaert, Patrick. Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability. Annales de l'Institut Fourier, Tome 40 (1990) no. 1, pp. 213-236. doi : 10.5802/aif.1211. https://aif.centre-mersenne.org/articles/10.5802/aif.1211/

[1] M. Berger, P. Gauduchon and E. Mazet, Le Spectre d'une Variété Riemannienne, Lecture Notes in Mathematics 194, Springer-Verlag, Berlin-Heidelberg-New York (1971). | MR | Zbl

[2] P. Bonckaert, F. Dumortier and S. Strien, Singularities of Vector fields on R3 determined by their first nonvanishing jet, Ergodic Theory and Dynamical Systems, 9 (1989) 281-308. | Zbl

[3] H. Brauner, Differentialgeometrie, Viewig, Braunschweig, 1981. | MR | Zbl

[4] M.W. Hirsch, Differential Topology, Springer, New York, 1976. | MR | Zbl

[5] M.W. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR | Zbl

[6] J.L. Kelley, General Topology, Van Nostrand, New York, 1955. | MR | Zbl

[7] R. Labarca and M.J. Pacifico, Morse-Smale vector fields on 4-manifolds with boundary, Dynamical Systems and bifurcation theory, Pitman series 160, Longman, 1987. | MR | Zbl

[8] S. Lang, Differential Manifolds, Addison-Wesley, Reading Massachusetts, 1972. | MR | Zbl

[9] W. De Melo, Moduli of Stability of two-dimensional diffeomorphisms, Topology 19 (1980), 9-21. | MR | Zbl

[10] W. De Melo and F. Dumortier, A type of moduli for saddle connections of planar diffeomorphisms, J. of Diff. Eq. 75 (1988), 88-102. | MR | Zbl

[11] J. Palis, A differentiable invariant of topological conjugacies and moduli of stability, Astérisque, 51 (1978), 335-346. | MR | Zbl

[12] M. Spivak, Differential Geometry, Volume I, Publish or Peris Inc., Berkeley, 1979.

[13] S. Van Strien, Normal hyperbolicity and linearisability, Invent. Math., 87 (1987), 377-384. | MR | Zbl

[14] S. Van Strien, Linearisation along invariant manifolds and determination of degenerate singularies of vector fields in R3, Delft Progr. Rep., 12 (1988), 107-124. | MR | Zbl

[15] S. Van Strien, Smooth linearization of hyperbolic fixed points without resonace conditions, preprint. | Zbl

[16] S. Van Strien and G. Tavares Da Santos, Moduli of stability for germs of homogeneous vector fields on R3, J. of Diff. Eq., 69 (1987), 63-84. | Zbl

Cité par Sources :