On donne des conditions suffisantes pour que deux difféomorphismes, qui sont égaux sur une même variété invariante et dont les dérivées dans la direction normale sont aussi égales, soit conjugués ; on obtient en plus que l’homéomorphisme conjuguant satisfait des inégalités supplémentaires. Ces inégalités, qui impliquent l’existence de la dérivée normale de le long de , servent à étendre cette conjugaison dans des régions où il y a des modules de stabilité.
We give sufficient conditions for the conjugacy of two diffeomorphisms coinciding on a common invariant submanifold V and with equal normal derivative; moreover we obtain that the homeomorphism h realizing this conjugacy satisfies additional inequalities. These inequalities, implying also the existence of the normal derivative of h along V, serve to extend this conjugacy towards regions where moduli of stability are present.
@article{AIF_1990__40_1_213_0, author = {Bonckaert, Patrick}, title = {Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability}, journal = {Annales de l'Institut Fourier}, pages = {213--236}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {1}, year = {1990}, doi = {10.5802/aif.1211}, zbl = {0681.58022}, mrnumber = {91e:58086}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1211/} }
TY - JOUR AU - Bonckaert, Patrick TI - Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability JO - Annales de l'Institut Fourier PY - 1990 SP - 213 EP - 236 VL - 40 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1211/ DO - 10.5802/aif.1211 LA - en ID - AIF_1990__40_1_213_0 ER -
%0 Journal Article %A Bonckaert, Patrick %T Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability %J Annales de l'Institut Fourier %D 1990 %P 213-236 %V 40 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1211/ %R 10.5802/aif.1211 %G en %F AIF_1990__40_1_213_0
Bonckaert, Patrick. Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability. Annales de l'Institut Fourier, Tome 40 (1990) no. 1, pp. 213-236. doi : 10.5802/aif.1211. https://aif.centre-mersenne.org/articles/10.5802/aif.1211/
[1] Le Spectre d'une Variété Riemannienne, Lecture Notes in Mathematics 194, Springer-Verlag, Berlin-Heidelberg-New York (1971). | MR | Zbl
, and ,[2] Singularities of Vector fields on R3 determined by their first nonvanishing jet, Ergodic Theory and Dynamical Systems, 9 (1989) 281-308. | Zbl
, and ,[3] Differentialgeometrie, Viewig, Braunschweig, 1981. | MR | Zbl
,[4] Differential Topology, Springer, New York, 1976. | MR | Zbl
,[5] Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR | Zbl
, and ,[6] General Topology, Van Nostrand, New York, 1955. | MR | Zbl
,[7] Morse-Smale vector fields on 4-manifolds with boundary, Dynamical Systems and bifurcation theory, Pitman series 160, Longman, 1987. | MR | Zbl
and ,[8] Differential Manifolds, Addison-Wesley, Reading Massachusetts, 1972. | MR | Zbl
,[9] Moduli of Stability of two-dimensional diffeomorphisms, Topology 19 (1980), 9-21. | MR | Zbl
,[10] A type of moduli for saddle connections of planar diffeomorphisms, J. of Diff. Eq. 75 (1988), 88-102. | MR | Zbl
and ,[11] A differentiable invariant of topological conjugacies and moduli of stability, Astérisque, 51 (1978), 335-346. | MR | Zbl
,[12] Differential Geometry, Volume I, Publish or Peris Inc., Berkeley, 1979.
,[13] Normal hyperbolicity and linearisability, Invent. Math., 87 (1987), 377-384. | MR | Zbl
,[14] Linearisation along invariant manifolds and determination of degenerate singularies of vector fields in R3, Delft Progr. Rep., 12 (1988), 107-124. | MR | Zbl
,[15] Smooth linearization of hyperbolic fixed points without resonace conditions, preprint. | Zbl
,[16] Moduli of stability for germs of homogeneous vector fields on R3, J. of Diff. Eq., 69 (1987), 63-84. | Zbl
and ,Cité par Sources :