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CONJUGACY OF NORMALLY
TANGENT DIFFEOMORPHISMS

A TOOL FOR TREATING
MODULI OF STABILITY

by P. BONCKAERT(1)

1. Introduction.

Let M be a Riemannian manifold and /, // : M —> M two C1 dif-
feomorphisms leaving a submanifold V C M invariant. We say that /
and /' are normally tangent at V if f\V = f'\V and Nf = N f , where
N denotes the derivative in the normal direction at V. In particular, /
is normally tangent to its normal linear part N(f), that is, if we identify
a neighbourhood of the zero section in the normal bundle N of V in M
with a neighbourhood of V in M by exponentiating (see e.g. Spivak [12]),
N(f) is the unique map N —> N which covers f\V : V -> V such that (i)
N(f) is linear in each fiber of N -^ V and (ii) TN(f) = Tf\N along V.
Note that we do not ask that Tf = Tf along V, so the "shear" terms
may be different. A similar definition can be given for vector fields. We
want to give sufficient conditions such that / and /' are conjugate near V;
moreover we will require some extra properties of the conjugating home-
omorphism; these extra properties are useful in the treatment of moduli
of stability. Moduli of stability appear in various problems in dynamical
systems; for detailed descriptions we refer to f.i. [9], [10], [II], [16]; it is
not our aim to define nor treat them in this paper.

^The author wishes to thank the IMPA, Rio de Janeiro, Brasil, for the hospitality
during part of the preparation of this paper; partially supported by NFWO Belgium.
Key-words: Conjugacy - Diffeomorphism - Modulus of stability.
A.M.S. Classification: 58F14.
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Let us just describe them informally. Moduli are usually due to non-
transversal connections between two saddle type behaviors. For example,
let P and Q be two normally hyperbolic invariant manifolds for / and
/' such that Wf{Q) and Wy(P) resp. Wf,(Q) and W^P) have a non-
transversal intersection. A typical attempt to conjugate / and /' is first
to construct a conjugating homeomorphism near P and then trying to ex-
tend it to a neighbourhood of Q. In general this last step is impossible,
unless / and /' satisfy rigid (i.e. necessary) spectral conditions, cfr. the
cited references. This type of rigidity is called a modulus of stability. We
give, in section 2, a simple example to indicate how this extra property of
the conjugating homeomorphism can be used to overcome the extension
problem just mentionned.

Normally tangent diffeomorphisms or vector fields appear, for ex-
ample, when we blow up a singularity of two vector fields with the same
first non-vanishing jet (see [2]), or in the study of dynamical systems with
boundary (see [7]), or in the presence of symmetry.

The extra property, mentionned above, is roughly the following.

Suppose, for simplicity, that M = V x N with N some normed
space.

Let/i = (ft-y./iy.) : V x N —»' V x TV be a homeomorphism defined
near V x {0} conjugating / and /'; then we want to have the following
estimates (d is some metric on V) :

(^ (d(h^r),v) = 0(|rn
v / \\hr{v,r)-r\ = Odrl^)

Qr

for some a € ]0,1[. Remark that (1) implies that —^(t^O) exists and is
or

equal to the identity. If we don't require extra condition (1), then classical
results on this subject can be found in [5].

2. An example.

Let L : R71 x R -> R71 x R be a linear map of the form L(-u, r) =
(LsV, p,r) with |Ls| < 1 < /A. Suppose that ft is a homeomorphism such that
/ i o L = L o f t o n a domain W of the form V x] - 6, c[, where V C R^O}
is a fundamental domain for Ls in the sense that there exists a disk D in
R71 containing 0 such that V = D\L,s{D).
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By "saturation", this conjugacy extends to (at least) (D\{0}) x
] - e,e[ since for every (v,r) in (P\{0}) x] - c,e[ there exists a (unique)
N e N such that £-^,r) C V x]-c,6[; put/i(i;,r) = L^o/io£-^,r).
In general, h does not necessarily extend to {0} x] -c, e[. However, if h sat-
isfies estimates like in (1) on W, it extends to the identity on {0} x] -e, 6[.
In fact, we claim that for any sequence (^,r,) converging to (0,r) we have
that h(vi, Ti) converges to (0, r). Let M € N be so that L-^ (-y,, n) e W.
Since

h(vi,n) = L^ohoL^^Vi.n)

= L^W;^^-^))

= ^(L^^+Od^-^r.l^.^-^^+Od^-^r,!^))

= (.^^^^(i^l^.r^0^^)

we get that A(^,r,) -> (0,r).

3. Conjugacy near an invariant manifold.

If VQ € V is a fixed point of / and if the codimension of V in M is
one, then in [2] one obtained the following result near VQ :

THEOREM 1 [2]. — Let /, // be C2 diffeomorphisms on R71 x R with a
fixed point in (0,0), leaving R71 x {0} invariant. Write f = (/^, fr) € R71 x R
and similarly for /'. Denote (v,r) for the coordinates on H71 x R. Suppose
that /|R71 x {0} = /'[R71 x {0} and

^:|Rnx{0}=^|R-x{0}.

Q f

11 ——(0»0) ^ 1 then there exists a neighbourhood U of 0 and a

homeomorphism h conjugating f and f on U, i.e. ho f = f oh, and
writing h = (hy, hr) there exists an a > 0 such that on U :

(\hy(v,r)-v\ < \r\01

\\hr(v,r)-r\ < \r\l+a. D

It is our aim to replace (0,0) by an invariant manifold V. This is
not always possible in general, even for example if we ask that the normal
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derivative Nf is a hyperbolic (pure) contraction i.e. if sup|7V/a;| < 1.
x€V

A counterexample for this, even without asking extra conditions (1), was
given by S. van Strien, [13].

THEOREM 2 [13]. — Let M = S3 = R3 U {00} and consider V = S2

as a submanifold of M. There exists a C°° diffeomorphism f:M —> M
leaving V invariant such that :

(i) sup \Nfx\ < 1 for some Riemannian structure on M
x^V

(ii) / is not C° conjugate to N(f).

A similar example exists for flows.

We need a few preliminaries :

DEFINITION 1. — A Riemannian manifold V is said to have a strictly
positive radius of injectivity p if every point of it has a normal chart of
radius at least /?, in other words, if for all v e V the exponential map
exp^ : {w e TyV : \w\ < p} —> V is a diffeomorphism onto its image. We
say that this image is a normal chart of radius p.

(Question : give a "natural" sufficient condition for this if V is not
compact.)

PROPERTY 1 (See [I], [2]). — Let V,p,v, be as above. Let \ ' \ v be
the norm on TyV and d the Riemannian metric on V. Then for all a < p
there exists a Ca > 0 such that for all wi,ws € TyV with |wi| < a and
\w^\ < a, denoting v\ = exp^(wi) and v^ == exp^ws) :

(1 -Ccr)d{v^v^) < |wi -W2| < (1+^)^1,^2)

and Co -^ 0 if a -» 0.

DEFINITION 2. — IfV and W are Riemannian manifolds, V having
strictly positive radius of injectivity, then the set

J L(T^TyW)

XEV
yew

can be given a uniform structure (see [6]) as follows. A base B for the
uniformity is given by subsets Ue of£x £ consisting of pairs (T, S) e £x
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£ such that (i) T € L(T^V,TyW),S (E L(T^,V,Ty.W); (ii) x and x ' lie in
a normal chart (j) of radius e; (Hi) y and y ' lie in a normal chart ^ of radius
e; (iv) and

Wy o T o P(<T1)^) - D^y. o S o Z^-1)^)! < e.

If f :V —>W is a differentiable map, we consider the map Df : V —>
£: x —^ Dfx. So we say that Df is uniformly continuous for the uniform
structure defined above if for each c > 0 there exists a 6 > 0 such that
for all x , x ' € V : d ( x , x ' ) < 6 implies (Df^.Df^) e U^. Here d is the
distance on V.

DEFINITION 3. — IfV is a metric space and W C V then a uniform
neighbourhood of W in V is a set U of the form

U={v e V :d(v,W)<e}

for some e > 0.

Notation. — If A : E —> E is an invertible continuous linear map
between normed spaces we denote m(A) = \A~1 \~1', m(A) is called the
minimum norm of A.

Let V be a manifold and let /,/' : V x R -^ V x R be two
diffeomorphisms, normally tangent at V x {0}. Suppose that the radial
behavior (in the R-direction) is expansive, and that the tangential behavior
(in y-direction) is "less expansive" (a precise statement follows). Then we
have the following result.

THEOREM 3. — Let V be a manifold and let f,f : V x R -^
y x R be a two C2 diffeomorphisms leaving V x {0} invariant. Write
f = (fv, fr) € V x R and similarly for f. Denote (v, r) for the coordinates
on V x R. Suppose that f\V x {0} = f'\V x {0} and

^\v x {O}=^|Y x {o}.

Let a e]0,1[ be given. Suppose that there exists a Riemannian structure
on V such that V has a strictly positive radius of injectivity and such that,
denoting

A=infm(^,0)) and B = sup |^(^,0)|,v^v or vev ov
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one has :

(2) A > 1 andB<Aa.
r\ p

Suppose furthermore that df and c^—71) are uniformly continuous and
or

bounded along V x {0}. Let finally /3 e]0, a[.

Then there exists a homeomorphism h conjugating f and f on a
uniform neighbourhood (depending on a and f3) of V and satisfying there
the following inequalities, writing h = (hy.hr) e V x R ;

(i) d^.rl.r^H0,

(ii) \hr(v,r)-r\<\r\1^;

d is the Riemannian metric on V.

Proof. — Since we only claim a conjugacy on a uniform neighbour-
hood of V we may modify / and /' outside such a uniform neighbourhood
as follows.

Let (p : R -> [0,1] be a fixed C°° "bump" function such that

(i) (p(t) = 1 on the neighbourhood of 0,
(ii) ^)=0for^[-l,l].

Let r : R -> [-1/2,1/2] be a fixed C°° function with the following proper-
ties :

(i) r(t)=ttoit e [-1/3,1/3],
(ii) T(^)=0for^[- l , l ] ,

(iii) |T'(<)| < 1 for all t € R.

We denote, for c > 0 and r e R:

<^(r) = (p(-) and r^(r) = £ . T ( 1 1 ) 7 - .
£ e \r\

Instead of / and /' we will consider, for e > 0, the maps fe resp. f^ defined
as follows (we only give the definition for fe since j[ is treated similarly).
Let/,=(/^,/^) with

fe,v(v,r) = fy(v,r,(r))

feA^r) = ^:(^0).r+^(r)(/,(t;,r)-^(z;,0).r).
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One immediately checks that on a uniform neighbourhood of V x {0} /
and fe coincide. We want to have control on the derivatives of /„• The
proofs of the next two lemmas are lengthly but straightforward. For the
second one we use results in [4, chapter 2, section 1].

LEMMA 1. — There exists M > 0 such that for all a > 0 there exists
an eo > 0 such that for all e €]0,£o] and for all (v,r) e V x R we have
that fe,v(v,r) lies in the same normal chart as fv(v,0) and in this chart
the following estimates hold :

(i)l^(^)-^,o)|<.,.

(") I^MI^M;

(iu) I^I^MH;

(iv)l^,r)-^(.,0)|<a;

(v) \feAv,r)-9-^(v,0).r\<M}r\2;or

(v!) K/r1)^,?-) - (J ^(^O).?-! < M|r|2 iff, is iavertible;

(vii) \9(J^(v,r)\<M;

^I&^K^

(ix) |^(^,r)|<M;

(x) Jet 71-,, : V x R -. V be the projection and f = f\V x {0},

tAen|^(7o^o/,-i)|<M. ^

LEMMA 2. — Ife>0 is small then fs is a diffeomorphism. n

From now on we drop the index e and we assume that / and /' satisfy
the properties and estimates of the lemmas above.
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LEMMA 3. — He > 0 is small in the construction above then there
exists a unique mapping h=(hy,hr):V x R -^ V x R such that

(i) hof=foh,

(ii) h is continuous,

(iii) d(hy(v,r),v) < ̂  for \r\ < e and

(iv) \hr(v,r) -r\< |r|1-^3 for |r| < e.

Proof. — The proof will include two sublemmas. Let us introduce
some notations.

For a map h = (hy, hr) :V x R -> V x R we define for each e > 0

D^Id)= sup I ̂ .(y)^) J^-^l I
vev,\r\<e [ H^ Irl1^ J

where Jd is the identity of V x R. We put

Ee = {h : V x R-^V x R is continuous and D^(h,Id) < 00}

and for h,hf € Ee:

D^h')= sup { d(h^v^h^r)) \h^r) - h^r)\ 1
vev^\<e\ ^ ' I r l 1 ^ J

Then (Ee,De) is a complete pseudometric space. For h e Ee we define
P A : y x R - ^ y x R b y

(P/i)=/ 'oAo/-1 .

SUBLEMMA 1. — Let Ee(l) = {h e E, : De(h,Id) < 1}. Ife > 0 is
small then P(jB,(l)) C E,(l).

Proof. — Let /i e JSg(l). Let TT^,,^ denote the projections from
V x R onto V resp. R.

Denote / = f\V x {0} and write /-^r) = (i/,^).
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a) One has, using Lemma 1

d((PhUv,r),v) ^ d^oh^'y^foh^v'y)) d(fo h^v',r')J(v'))

H" ~ H° M"

d(f(v'),v)

H"
M\hr(v',r')\ B+a M\r\

< F T + (A + a)0' + Irl̂

= (^^(M-'X1

if (T,£ are sufficiently small and if |r| <, e.

b) Also, using the assumption on /3,

m^,r)-r\ i^(^)-|Wy).o)-M^)i
\r\1^ ^ Ir-l̂

|[^(^(^,r'),0) - 9^(v',r')] • hr(v',r')\

+—r————————^——————————

|^(t,',r'). [hr(v',r') - r'}\ l^(^,r') • r' - r|

+——————H14^——————+———H14^———

M|M^T [M • d(h^v',r'),v') + MI^QOdrl1^)
- H1^ + Irl̂

|^(^,0)+0(H)•|r'|l+/3

+———FF^9———
|(^(v',0) + <9(H)) • (^^^(^O) + 0(|r|)) • r - r|

+-^———————————^—————————————

^Odrl^+Odrn

/ i \ 1+/3

^^o).o(H)|.^^^+o^j .0(1.1-)

< 1
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if e is sufficiently small and if |r| < e. This proves the sublemma. n

SUBLEMMA 2. — If e > 0 is small then P : Ee(l) -> Ee(l) is a
contraction.

Proof. — Let h,h' € Ee(l) and write f~l(v,r) = (v',r').

a) First of all

d((Pfe)^,r),(Pfe^r))
1 / ) ' 1 1 \

M0

^ (B + g + 0(H)) • £>e(fe, feVr + M • D.(/t, /^H^

^(^^^^j-^'^

b) Secondly

KP^^^rj-CPfeQ.^.r)!
H14''8

MH •^^(^r')^^^,^)) + 1^(^,0) +0(|r|)| • \hr(v',r') - h',(v',r')\

^———————————————————^|T^———————————————————

^Odrl^.^^/i^+l^^'.O)
or

I i X'^

+W)1 -1 .^o/0^ •C^A''•

So if 6: > 0 is small we get a contraction.

Continuation of the proof of Lemma 3. From the foregoing sublem-
ma it follows that there exists a h € £'e(l) such that De(Phyh) = 0, and
for all h1 € Ee(l) : if D^Ph^h') = 0 then D^(h,h1) = 0. Let us analyse
this a bit more in detail. The condition De(Phyh) = 0 means : for all
(v,r) € V x R with |r| < e we have Ph(v^r) = (v,r). As can be checked
form the definition of P this implies

h o f\f-\V x B(Q,e)) = /' o h\f-\V x B(0,^)).
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But now we can extend this conjugacy to V x R by saturating by means
of / and /'.

This extension is unique, n

LEMMA 4. — If we take a > a and f3 > 0 sufficiently close to a
resp. (3, and if we apply Lemma 3 to a, /? then the obtained mapping h is
a homeomorphism.

Proof. — We apply Lemma 3 to a and f3 instead of a, /3. This is
possible if a and /3 are close to a resp. f3. We obtain an e close to e, say
^/2 < £ < e, and we obtain a unique mapping h = (hy, hr) : V x R -» V x R
such that

(i) f a o / = / ' o % ;

(ii) h is continuous;

(iii) d(hy(v,r),v) < |r|5' for |r| < £;

(iv) \hr(v,r) - r\ < H^ for |r| < e.

But by interchanging the role of / and /' we also infer the existence of a
unique mapping h such that h o f = f o h and with similar properties as
h. Combining these two we can write

h oho f = h o f oh
r>j __

= f oh oh.
wr>3 r^i _ ~

Write h = h o h. Then a straightforward estimation shows that h satisfies
all the properties of Lemma 3 (using the original a and (3)', necessarily
« — ~
h = Identity. Hence h has an inverse, namely h • /•.

Theorem 3 is proved, n

THEOREM 4. — Jn Theorem 3 we may replace V x R" by 'V x E'\
where E is a Hilbert space, provided that we add the following assumption:
denote

A -^w^
and log | ̂ (1:1,0,0) |

or
fh = sup ————.,—————— - 1

V16yl logm(-^i,0,0))
or
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then assume PQ < a and take /? € ]A),^[.

The Proof only differs from the preceding ones in the treatment of
the r-direction in Sublemmas 1 and 2. We choose /3 E\/3o,a[ and remark
that this yields

l^i.0,0)|
sup ——,,——————— < 1.
^(^(^,0,0))1^

or

Now it is straightforward to check that the desired estimates can be redone.

Remark. — Recent techniques of S. van Strien [15] in the case V =
one point and E = R71 give an indication that the extra assumption might
be superfluous.

4. Application.

DEFINITION. — Let V be a topological space and f : V —> V a
homeomorphism. We say that a set A C V is a uniform uj-set if for any
neighbourhood U of A there exists P = P{U) 6 N such that for all y C V:

# WO/) i u} < P.
Similar definition for a uniform a-set.

If M is a manifold and / : M —> M is a diffeomorphism leaving a
submanifold V C M invariant we write Vf = Tf\TV, and Nf denotes
the normal derivative along V.

THEOREM 5. — Let M be a manifold, f : M —> M a diffeomorphism
leaving the relatively compact codimension 1-submanifold V invariant. As-
sume that V has a trivializable normal bundle. Let us write f = f\V.
Suppose that there exists a uniform uj-set A CV for f such that, for some
metric on TM :

sup | V f^ [ < inf m(Nf^),
x^A X^A

inf m(Nf^) > 1.xeA

Then there exists N G N and a €]0,1[ such that for all n > N : /n satisfies
the assumptions of Theorem 3.
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Proof. — Denote

a = sup|y/a;|
xCA

b = inf m(Nf^) > 1
xCA

and fix 77, a',(/ e R"^ with a < a' < & ' < & . Choose for all x e A a
neighbourhood (Ta; of x in V such that for all y eUx:

\Vfy\<a' <b' <m(Nfy).

Put U = |J Ux. As (7 is a neighbourhood of A we know that there exists
x€A

P e N such that for all y e V:

# {n C N|r(2/) ^ (7} $ P.

Now let i/ C V and n e N, n > P. Denote I = m{{m(Nf^) : x C V} and
S = sup{[y/a;| : a; C V}. We can write

v(ny=]ivffi^
i=0

so [^(y71)^! < ̂ p • (a')71^ and m(N(fn)y) > 5p(y)7l-p.

We can find constants M > 1 and C, D > 0 with C > 1 and TV e N
such that for all n > N :

mWDy) >C>MD> M|y(D^|.

Then a e]0,1[ works in order to have the conditions of Theorem 3 for fn.

5. Conjugacy near an invariant submanifold of V.

If we want to replace {(0,0)} in Theorem 1 by an invariant sub-
manifold YI of V towards which we allow contractive as well as expansive
behavior, then things become more complicated.

Let us describe the situation in the next theorem, without being too
precise for the moment. Let V\ C V be an /-invariant submanifold on
which / is "almost" not expansive, that is |r(/|yi)| < 1 + rj for a "very
smalF T) > 0. The manifold Vi will play the role of {(0,0)} in Theorem
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1. We do not ask that V\ is compact, because we also want to cover cases
like the following. Suppose f.i. that V\ is a compact /-invariant manifold
on which r(/[yi)| ^ 1 + 7 7 , and suppose that there exists an invariant
manifold Vi with Vi C V \ C V such that the normal bundle N^ of Vi in
YI is contracted by T/, i.e. |M(/)| < 1.

r^t

Then on a neigbourhood of V\ in V i we still have that the norm of
the derivative is <: 1 + T]. We want to let this neighbourhood take over the
role of V\. So we allow open manifolds. Hence we have to impose extra
conditions on / and its derivatives such as uniform continuity, boundedness
etc. This is not too restrictive, since the applications we have in mind
concern neighbourhoods of compact manifolds. By presenting the theorem
in this way we avoid unnecessary repetitions of arguments in the proof of
it. We will assume that the Riemannian manifold V\ has a strictly positive
radius of injectivity for the exponential mapping. If we want to apply the
theorem to neighbourhoods of compact manifolds this is no problem if we
make a decent rescaling using diffeomorphisms mapping ] — £ , £ [ to R (e
small). See further on for the details.

THEOREM 6. — Let (Vi,di) be a Riemannian manifold having
strictly positive radius of injectivity, let V = V\ x R and M = V x R =
YI x R x R. Let /,/' : M —> M be two C2 diffeomorphisms leaving
V x {0} and Vi x {(0,0)} invariant. Write f = (A, /2, /r) € Vi x R x R and
fv = (/i ? /2)?' similarly for f. We use variables (v-^, v^ r) € V\ x R x R = M
and v = (^1,^2) ^ V\ x R = V.

Suppose that
/|vx{0} — / |vx{0}

and
Qfr, 9f'r,
-g^\Vx{0} = -g^\Vx{0}

(i.e. : f and f are normally tangent at V). Suppose furthermore that
there exist constants a, a', a" e R and r) > 0 such that for all v\ C V\ :

Ka'<|^(^,0,0) |<a"
or

1^(^1,0 ,0)1^1+7?
dv\

Ka< inf |^(vi,0,0)|;
neVi ova
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denote OQ = log a/ log a"; we assume that r\ < (a')00 - 1;
finally we assume that f is uniformly continuous along V^ x {(0,0)}, and

ffi f f^f
that Df, —3- and D(——) are bounded and uniformly continuous on V^ x

OV^ OT

{(0,0)}.

Then there exists an e > 0 and a homeomorphism h: V^ x] - e, e[2—^
Yi x R2 conjugating f and f on (Vix] - e,e[2) H f-^V^x} - e,e[2) i.e.
h 0 f = f°h. Moreover h satisfies the following inequalities : write
h = (/ii ,A-2»A'r) with respect to the product V\ x R x R; there exists an
a e]0,l[sucA that for all (vi,V2,r) e V^x] -e,e[2

di(M'yi^2,7'),'yi) < {r^
1^2(^1, V2,r)-v^\ < Irl0

\hr(vi,V2,r)-r\ < \r\l+ot.

Proof. — a) An "almost" diagonalization ofT(f\V x {0}) along Vi.

For shortness sake let us denote / = f\V x {0} = f'\V x {0}.

We consider V\ as a submanifold of V and look at its normal bundle.

Let Ty^V be the restriction of the tangent bundle TV to Vi. We
would like to have a C2 splitting

Tv,V=TVi@N

such that for ^i e V\ the tangent map Dfy^: T^V -^ Tf^V has, with
respect to this splitting, a matrix of the form

^ ^(^1,0,0) B(v,) ^
dv\Df,

Qh
i 0 ——(^i,0,0) ,

Vl —

\ 9V2 )

with |B('yi)| < o-, where a is any given "small" number. We will need
this in the estimates further on in the proof. First of all remark that the
zero entry is a trivial consequence of the invariance of V\ for /; also the
diagonal elements are independent of the N in the splitting. So the point
is to find a decent representative N for the normal bundle Ty^ V/TV^ of Vi
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in V. From [5] or [14] and from the assumption that for all ^i,^ € V\ :

l^^i,0,0)| < 1 +rf < a < |^(^,0,0)|
CWi 0^2

i"̂
it follows that Ty^V has a continuous jD/-invariant splitting

Ty,V=TV^@N\

First of all, like in [5], [14], fix some C2 splitting

Tv,v :ryie^°
(not necessarily being invariant for Df). Each linear bundle map U :
N° —> TVi defines splitting by putting, for v\ € V\ :

r^^r^yie^+^KA^)

where I denotes the identity. Let (7* denote the continuous linear bundle
map obtained in [5], [14] corresponding to the splitting Ty^V = TV\ (BN*,
that is : TV* = (J-h U:¥)NO. From their iteration process it follows that,
given a' > 0, there exists a C2 linear bundle map U : NQ —>• TV\ with

sup \U^-U^\<af.
viCVi

We will choose a ' in a moment. The splitting corresponding to U need not
be invariant. Let us look at the decomposition of Df with respect to this
splitting, which we denote

Tv,V=TVi@N.

So let no e N^ and consider

n = Uv^ no + no € M;i •

We must show that
\B(v^)(n)\ < a\n\.

Put
n* = U^riQ +HO;

i-̂
we can decompose D/^(n*) by writing

p7^*)=^)(^i)+^i
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for some n\ € M^)- As Vi is invariant for /, the 7V°-component of
rs/

Df y^ (n) is equal to n\. So with respect to the splitting

Tv,V=TVieN

we have
B(v^(n) = Df^) - (m + ̂ o(m));

hence, for some M > 0 :

|5(^)| < \Df^{n)-Df^)\+\Df^)-(n,+Uf^n,))\
< M\n - n*| + [m + ̂ )(m) - (ni + Uf^{n,))\
< M|^(no) - U:,(no)\ + \U^ - Uf^\\n,\

^ M^lnol+^l^^i^.O)!!^!
CW2

< 2M(7/|7lo|

and this is smaller than a\n\ provided a ' is small enough. So from now on
we assume that |2?('yi)| < a for all v\ C Vi.

In the usual way we can identify a small neighbourhood of V\ in V
with a neighbourhood of the zero section in N : see for example [5], [8], [12].
This defines a coordinate system (^1,^2) ^ V\ x R in the neighbourhood
of Vi x {0} in V-i x R of the form V^x] — e,e[ for some e > 0. In this
coordinate system all the assumptions of the theorem remain valid since
the exponential mapping preserves the distance to Vi; moreover in this
coordinate system we have

l^^i, 0,0)| <a.
dv'2

b) A "bumping off" construction for f and f.

Since we only claim a conjugacy on a uniform neighbourhood of
V\ x {(0,0)} in M we may modify / and /' outside such a uniform neigh-
bourhood as follows. We may assume that Vi is connected. Fix a number
A with

A > inf [^(^O.O^a;
vieVi dv2

denote

K= sup |^(^,0,0)-A|;
vi€Vi OV'z
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let (f>: R —»• [0,1] be a fixed C°° bump function such that

(i) (j)(t} = 1 on a neighbourhood of 0;
(ii) <^)=0for^[- l , l ]

(iii) V t € R : \t(f)'(t}\ < ———- if K > 0, (such a function can be
zA

1 A — a
found since J ———dt = oo).

o 2.Kt

Fix moreover a C°° function T : R —>[ - - , - ] with the following

properties :

(i) r ( t ) = t f o T t e [ 1 1 ^
0 0

(ii) r(t)=0for^[-l,l];

(hi) W 6 R : |r'(f)| < 1.

We denote, for e > 0, vs € R and r 6 R :

/ \ J^l^ V2
Te(U2) = £T(——-)——— :

£ 1^21

r,(r) = ^ ( i ^ ) -
e |r|

<A.(V2) = ^( lv21);

^(r) = ^(H).

Instead of / and /' we will consider, for e > 0, the maps fe resp. f[ defined
as follows (we only give the definition for fe since f[ is treated similarly).
We put

fe,l{vi,V-2,r) = /l(vi,Te(u2),Te(r))

fs,2(Vl,V-2,r) = AVI + <f>e(T)<t>e(V2)(f2(vi,V-2,0) - AVt}

+^(r)(/2(Vl,T^(V2),r) - /2(V!,Te(U2),0))

Qfr,

-Qr^
fe,r(Vl,V2,r) = ———(vi,T,(v-i),0) • T + <i>e(r){fr(v^T^Vt),r)

9fr
-^(vi,TM,0)-(r),
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<9/2if -—(vi,0,0) > 0; in the other case we replace A by —A; let us treat the
ov^

first case, since the second case goes similarly. One immediately checks
that / and fe coincide on a uniform neighbourhood of V\ x {(0,0)}. Also:

M > e =^ /£,2 (vi,V2,r) = Av2

and
Q P

/£,r(^l,'y2,r) = ——(Vl,T^2),0) ' T.
or

c) Construction of the conjugacy.

From now on we drop the index e and we assume that / and /' satisfy
the estimates of parts a) and b). Let o;o be as in the theorem. If a < OQ
then (aft)a/a < 1. Fix a < OQ with the property that rf < (a')0 — 1, and
fix /? c]0, a[. The major step in the proof is the following.

LEMMA 5. — Let /, /' be like in parts a) and b). Fix r > a". Ife > 0
is small then there exists a unique mapping h = (hy, hr) :V x R —^ V x R
such that

(i) hof=foh;

(ii) h is continuous;

(hi) write hy = (h\^h^) with respect to the product V\ x R; then
h^{v,r) = 1:2 if\T\ > r^e;

(iv) c?i(fai( 'yi,V2,r),Vi) < [r]" for |r| < r^e;

(v) 1/12(^15^2^) -^l < l^l0 fo^ H < ^3^;
(vi) |/ir('yi)^25y*) ~r\ < Irl1"^^ for |r| < r3£.

The Proof of this lemma and of the rest of the theorem is now to a large
extent similar to the proof of Theorem 3, and is hence omitted. Let us
just mention that the operator P is to be taken as follows :

(PA)i = fohof-1

(p^ « f (n2~10^0/^^) if | /r(^r) |< rh
1 ) 2 "" f V2 if|^,r)|> r^e
(Ph)r = f^hof-^

THEOREM 7. — In Theorem 6 we may replace "V = Vi x R" by
"V = Vi x R^j? > 1, provided that we add the following assumption :
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there exists an invertible linear map A: R^ -> R^ such that

(3) inf m(A+A(|y2(^,0,0)-A))>a.
vieVi,Ae[o,i] OTS

The Proof is almost a copy of the preceding one. Let us indicate where
the extra assumption is used. In order to let the estimates in work, we
made a cut off construction for the operator P in the v^ -direction. For
this purpose we need the fact that, for large r, /2 (^i, ̂ 2, r) is independent
of ^i and r. This was achieved by the "bumping off" construction in part
b) of the proof. Now in this construction we use the extra assumption for
higher dimensions. Note that, for p = 1, assumption (3) is always satisfied

r\ p

if Vi is connected. In general it means that "—^(^i.O.O) may not rotate/i'?»rtQv2
too much if i;i varies".

6. Application.

First a new preliminaries. According to [8], Chapter VII. par. 3,
any Hilbert bundle which is trivializable as a vector bundle is Hilbert
isomorphic to a trivial Hilbert bundle (i.e. with a constant inner product
on each fiber); let us explain this in more detail. Let TT : E -> V be a
vector bundle over the base space V, isomorphic to V x H, where Jf, (.,.)
is a Hilbert space and such that for each x C V there is an inner product
(., .)x on H. There exists a continuous linear map Ax : H —^ H such that

{v,w)x = (A^,w)

for all v,w e H. This Ax is positive definite and symmetric. Hence we
can consider a square root B = A1/2 of it, and one has

(A^,w) =(B^,v,B^w)

for all v, w C H. If we take

B:V x H -^V x H : (x,v) -^ (x.B^v)

then B is a Hilbert bundle isomorphism between the original Hilbert bun-
dle and a trivial Hilbert bundle. It is clear that B has the same differen-
tiability as the metric on E.

Let M be a smooth manifold, V C M a C2 submanifold of codimen-
sion one and Vi C V a compact C2 submanifold. Let /, /' : M —> M be
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C2 diffeomorphisms leaving V and V\ invariant. Suppose that / and /' are
normally tangent at V. Let N be the normal bundle of V in M. Suppose
that V x e YI : (Nf)x : Nx —^ Nf^) is a hyperbolic (pure) expansion
for a some Riemannian on N. (For a hyperbolic (pure) contraction one
should consider /"^(.H"1.) Suppose that N is trivializable on a neigh-
bourhood A of YI in y, that is : there exists a vector bundle isomorphism
^ = (-0^,^) : N\A -)> A x £ covering the identity (see [8]).

Let TVi V be the restriction of the tangent bundle of V to V\. Suppose
that Ty^ V has a trivializable C2 r/-invariant splitting

Tv,V =N^eTVieN^.

This means that the splitting of the normal bundle of Vi in V, i.e. Nf ©
A^f, is isomorphic in the sense of vector bundle morphisms (see [8]) to
Vi x Vy, x Vs for some fixed vector spaces Vy, and Vs. For any x e Vi put

î,./ = r/,|r,yi
A^J = TMN^
N^f = r/|jv^.

Suppose that there exists a C2 Riemannian structure on TV such that for
all x G V\ : V\^f is an isometry and

|^y|<l<m(A^/).

Let us introduce some more abbreviations :

ao = J^m(A^J)

ao' = sup |AT/a;|
a;€Vi

ao
logflQ

log ao'
log|A^^

^ = ^P , ^r^-1-a;evi logm(Nf^)

If IV is a small neighbourhood of Vi in M we can consider the orthogonal
projections TT^ : W -> V and 71-1 : V -^ Vi. Let finally ^ : IV -^ N\W n V
denote the natural identification between W and a neighbourhood of the
zero section in N\W D V and put TTE = ̂ Pr 0/^ '-W —^ E.

THEOREM 8. — Let M, V, Yi,/,/', 00,00', OQ and f3o be as above. Let
y\ x (Vu x Vs) (considered as a trivial bundle vector bundle) have the metric
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induced by the isomorphism with N^ © N8, and let B : V^ x Vy, —> V\ x Vy,
be a Hilbert bundle isomorphism trivializing the metric as described above.
Denote 7T = B^T^Nf) : V^ x Vy, -> Vi -^ Vy,. Assume thai there exists
a linear map A: Vy —> Vy such that

(4) ^A.^^^^-^^^
and assume that (3o < OQ and /3o < 1.

Then there exists a neighbourhood W of V\ in M and a homeomor-
phism h : W -^ h(W) C M conjugating f and f on W H /^(W) and
having the following properties with respect to some Riemannian on M
and V. Let d,M-> dy resp. d\ be the metrics on My V resp. Vi. There exists
a, /3 e]0,1[ and K > 0 such that for all w € W :

di(7Ti 07rv(/l(w)),7Ti 07iv(w)) < KdM^W, TT^W))0

dv(7rv(h(w),7rv(w)) < KdM^w^vW)0'

dM^E(h(w)),7TE(w)) < KdM(w,7Tv(w))1^.

Proof. — Up to a C2 change of coordinates we can assume that
/,/' : Vi x Vs x Vn x E -^ Yi x Vs x Vn x E with V = Yi x Vs x Vn x {0}
and Yi x {(0,0,0)} invariant. Consider N = V x E = M a s i h e trivial
normal bundle of V in M and consider N-^ = V\ x Vg x Vu = V as the
trivial normal bundle of Vi in V. Let g be the metric on M for which we
have the normal hyperbolicity conditions as stated in the theorem.

As we have explained we can find a C2 vector bundle isomorphism
(f> : N —» N such that (f>^g is constant, that is, on Vs^Vu and E have a
fixed inner product. Let us prove the theorem for (f>^f and (f)^f and let us
denote these diffeomorphisms again / and /'. According to [5] there exists
invariant manifolds for f\V near Vi, more precisely, there exist unique C2

invariant manifolds W8 and W^ tangent at Vi to V\ x Vs resp. to V\ x Vu.
Let Vs(e) denote the ball of radius e in Vg.

Up to C2 change of coordinates ("straightening out the invariant
manifold") we may, and do, assume that the stable manifold W8 is locally
equal to Vi x Vs(e). Let us write / = (fi,fs,fu,fr) with respect to the
product YI x Vs x Vy, x E, and similarly for /'. Let a" > ao' be close
to a'o. If e is small enough then we can find a' > 1 such that for all
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(vi,Vs) e YI x Vs(e) we have

1 < a' < ̂ (^(^^0,0)) < 1^(^,^,0,0)1 < a".' ̂  -^(^i,^0,0)) < |^^ - n ̂ ' - -"
or 9r

In the same way, if rf > 0 is a small number then, since Vi is invariant,

1^( .̂0,0)| ̂ 14-,,,

and if a < OQ is close to ao then

l<a<m(^(i;i,^,0,0))dv-u

for all (v^.Vs) € Vi x V^). We want to replace Vs(e) by Vs. For that
purpose we use a diffeomorphism r :R ->]- £,e[ satisfying the following
properties:

(i)^^,!]:^)^,

(ii) V ( 6 R : 0 < r ' ( t ) <. 1,

and we put

T-.ViXV^xV^E-.VixV^V^xE-.^x^^^^T-^^-^.y^).
\x\

Now it suffices to consider T^f and T^f instead of / resp. /'. Obviously,
the estimates on the partial derivatives for / on V\ x Vs(e) x {(0,0)} hold
for TV on Vi x Vs x {(0,0)}. So from now on we assume that W8 = Vi x Vs
and we denote T^f and T^f again / resp. /'.

W8 will play the role of V\ in the Theorem 7 and Vy, will take the
role of R. By construction V\ is invariant. ^

Remark. — Precisely as in section 3 it should be noted that (i) if
the codimension of V in At is one then /3o = 0, yielding a simplification of
the assumptions and that (ii) if the codimension of V\ in V is equal to one
condition (4) is always satisfied.
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