Let be an integer. Let be the modular curve over , as constructed by Katz and Mazur. The minimal resolution of over is computed. Let be a prime, such that , with prime to . Let . It is shown that has stable reduction at over , and the fibre at of the stable model is computed.
Soit un nombre entier. Soit la courbe modulaire sur , construite par Katz et Mazur. On calcule la résolution minimale de sur . Soit un nombre premier, tel que , avec premier à . Soit . On montre que a réduction stable en sur , et on calcule la fibre au-dessus de du modèle stable.
@article{AIF_1990__40_1_31_0, author = {Edixhoven, Bas}, title = {Minimal resolution and stable reduction of $X_0(N)$}, journal = {Annales de l'Institut Fourier}, pages = {31--67}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {1}, year = {1990}, doi = {10.5802/aif.1202}, zbl = {0679.14009}, mrnumber = {92f:11080}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1202/} }
TY - JOUR AU - Edixhoven, Bas TI - Minimal resolution and stable reduction of $X_0(N)$ JO - Annales de l'Institut Fourier PY - 1990 SP - 31 EP - 67 VL - 40 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1202/ DO - 10.5802/aif.1202 LA - en ID - AIF_1990__40_1_31_0 ER -
Edixhoven, Bas. Minimal resolution and stable reduction of $X_0(N)$. Annales de l'Institut Fourier, Volume 40 (1990) no. 1, pp. 31-67. doi : 10.5802/aif.1202. https://aif.centre-mersenne.org/articles/10.5802/aif.1202/
[1] Modular functions of one variable IV, Springer Lecture Notes in Mathematics, 476 (1975). | Zbl
and ,[2] Séminaire de géométrie algébrique 7 II, Springer Lecture Notes in Mathematics, 340 (1973). | MR | Zbl
and ,[3] Les schémas de modules des courbes elliptiques. In Modular Functions of One Variable II, Springer Lecture Notes in Mathematics, 349 (1973). | MR | Zbl
and ,[4] Heegner points and derivatives of L-series, Invent. Math., 84 (1986), 225-320 | MR | Zbl
and ,[5] Eléments de géométrie algébrique, Ch. I, II, III, IV, Publications Mathématiques de l'I.H.E.S, 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967). | Numdam
,[6] Séminaire de géométrie algébrique I : Revêtements étales et groupe fondamental, Springer Lecture Notes in Mathematics, 224 (1971). | Zbl
,[7] Curves with high selfintersection on algebraic surfaces, Publications Mathématiques de l'I.H.E.S, 36 (1969). | Numdam | MR | Zbl
,[8] Algebraic geometry, Springer Graduate Texts in Mathematics, 52 (1977). | MR | Zbl
,[9] Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, Princeton University Press, 108 (1985). | MR | Zbl
and ,[10] Rational singularities, with applications to algebraic surfaces and unique factorization, Publications Mathématiques de l'I.H.E.S, 36 (1969). | EuDML | Numdam | MR | Zbl
,[11] Modular curves and the Eisenstein ideal, Publications Mathématiques de l'I.H.E.S, 47 (1977), 33-186. | EuDML | Numdam | MR | Zbl
,[12] Courbes de Weil et courbes supersingulières, Séminaire de théorie des nombres 1984-1985, Université de Bordeaux 1. | EuDML | Zbl
,[13] An algorithm for computing modular forms on Γ0(N), Journal of Algebra, 64 (1980), 340-390. | MR | Zbl
,[14] Theta series and modular forms of level p2M, Compositio Math., 40 (1980), 177-241. | EuDML | Numdam | MR | Zbl
,[15] Colloque d'algèbre, 6-7 mai 1967, ENSJF.
,Cited by Sources: