We compute the unique nonzero cohomology group of a generic - linearized locally free -module, where is the identity component of a complex classical Lie supergroup and is an arbitrary parabolic subsupergroup. In particular we prove that for this cohomology group is an irreducible -module. As an application we generalize the character formula of typical irreducible -modules to a natural class of atypical modules arising in this way.
Nous calculons l’unique groupe de cohomologie ne s’annulant pas d’un -module -linéarisé localement libre générique, où est la composante d’identité d’un supergroupe de Lie classique complexe et un sous-supergroupe parabolique arbitraire. En particulier, nous démontrons que pour ce groupe de cohomologie est un -module irréductible. Comme application, nous généralisons la formule de caractère des -modules irréductibles typiques à une classe naturelle des modules atypiques apparaissant de cette manière.
@article{AIF_1989__39_4_845_0, author = {Penkov, Ivan and Serganova, Vera}, title = {Cohomology of $G/P$ for classical complex {Lie} supergroups $G$ and characters of some atypical $G$-modules}, journal = {Annales de l'Institut Fourier}, pages = {845--873}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {4}, year = {1989}, doi = {10.5802/aif.1192}, zbl = {0667.14023}, mrnumber = {91k:14036}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1192/} }
TY - JOUR AU - Penkov, Ivan AU - Serganova, Vera TI - Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$-modules JO - Annales de l'Institut Fourier PY - 1989 SP - 845 EP - 873 VL - 39 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1192/ DO - 10.5802/aif.1192 LA - en ID - AIF_1989__39_4_845_0 ER -
%0 Journal Article %A Penkov, Ivan %A Serganova, Vera %T Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$-modules %J Annales de l'Institut Fourier %D 1989 %P 845-873 %V 39 %N 4 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1192/ %R 10.5802/aif.1192 %G en %F AIF_1989__39_4_845_0
Penkov, Ivan; Serganova, Vera. Cohomology of $G/P$ for classical complex Lie supergroups $G$ and characters of some atypical $G$-modules. Annales de l'Institut Fourier, Volume 39 (1989) no. 4, pp. 845-873. doi : 10.5802/aif.1192. https://aif.centre-mersenne.org/articles/10.5802/aif.1192/
[1] A character formula for irreducible finite dimensional modules over the Lie superalgebras of series gl and sl, C. R. Acad. Sci. Bulg., 33 (1980), 1049-1051 (in Russian).
, ,[2] Une démonstration algébrique d'un théorème de Bott, Inv. Math., 5 (1968), 349-356. | MR | Zbl
,[3] Lie superalgebras, Adv. Math., 26 (1977), 8-96. | MR | Zbl
,[4] Characters of typical representations of classical Lie superalgebras, Comm. Alg., 5 (8) (1977), 889-897. | MR | Zbl
,[5] Representations of classical Lie superalgebras, Lect. Notes in Math., 676 (1978), 597-626. | MR | Zbl
,[6] Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Nat. Acad. Sci. USA, 81 (1984), 645-647. | MR | Zbl
,[7] Gauge fields and complex geometry, Nauka, Moscow, 1984 (in Russian).
,[8] Character formulas for irreducible finite dimensional modules of simple Lie superalgebras, Funct. Anal. i ego Pril. 14 (1980), N° 2, 35-38 (in Russian). | MR | Zbl
,[9] Lie superalgebras, Sovr. Probl. Mat. 25, VINITI, Moscow, 1984, 3-47 (in Russian). | Zbl
,[10] Seminar on supermanifolds N° 8, Stockholm University preprint, 1986.
,[11] Characters of typical irreducible finite dimensional q(m)-modules, Funct. Anal. i Pril., 20, N° 1 (1986), 37-45 (in Russian). | MR | Zbl
,[12] Borel-Weil-Bott theory for classical Lie supergroups, Sovr. Probl. Mat. 32, VINITI, Moscow, (1988), 71-124 (in Russian). | MR | Zbl
,[13] Geometric representation theory of complex classical Lie supergroups, Asterisque, to appear.
,[13'] Classical Lie supergroups and Lie superalgebras and their representations, Preprint of Institut Fourier, 1988 (contains a preliminary version of Chapters 0, 1, 2 of [13]).
,[14] The centre of enveloping algebra for Lie superalgebra Q (n, ℂ), Lett. Math. Phys., 7 (1983), 177-179. | MR | Zbl
,[15] The tensor algebra of the standard representation as a module over the Lie superalgebra gl(m/n) and Q (n), Mat. Sbornik, 123 (165) (1984), N° 3, 422-430 (in Russian). | EuDML | MR | Zbl
,[16] Irreducible representations of the basic classical Lie superalgebras SU(m/n)/U(1), OSP(m/2n), D(2/1,∞), G(3), F(4), Group Theoretical Methods in Physics, Lect. Notes in Phys., 201 (1984), 94-98.
,[17] Tables of irreducible representations of the basic classical Lie superalgebras, Preprint of Groupe d'astrophysique relativiste CNRS, Observatoire de Meudon, 1985.
,Cited by Sources: