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Introduction.

The objective of the present paper is to investigate the cohomology
of certain irreducible (7 °-linearized sheaves Jz? on G ° / P , G° being the
identity component of a classical Lie supergroup and P being a parabolic
subsupergroup. In particular we prove two mutually dependent conjectures
of [12]. The first one asserted that under certain restriction on P in
case G = P(m), see [12], the single nonzero cohomology group of ^f is
irreducible. Below we prove a more general result without any restriction
on P. The second conjecture asserted an explicit character formula for
a natural class of irreducible finite dimensional G°-modules and was a
direct consequence of the first one. Both results have been known when
P = B is a Borel subsupergroup. The investigation of the cohomology
of G ° I B in [12] (see also [13], Chapter 4) was based on an essential
generalization of Demazure's method of proving Botfs vanishing
theorem, [2]. In particular, developing the notion of a simple « super-
reflection », a vanishing result extending Botfs (vanishing) theorem to
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G ° I B was proven. In the case of a reductive Lie group G ' Bott's
theorem on G ' / B ' leads easily to a Bott- type theorem on G ' I P ' for
an arbitary parabolic P ' , however if G' is a Lie supergroup, the latter
is not the fact. Therefore the question about the cohomology of G ° / P
remained open in [12]. The result of the present work is not a complete
generalization of the main theorem of [12] to G°/P because (exept in
the case G = Q) we use a rougher vanishing result than in [12].
Nevertheless we introduce a generalization of the simple « superreflection »
suitable for any P (Steps A 2 and B 3 of the proof of Theorem 4 below).
A serious motivation for investigating the cohomology of G ° / P was to
obtain a generalization of the typical character formula. In this way
Theorem 4 below serves at the same time as a geometric version of the
well known Bernstein-Gelfand-Gelfand method (this method applied to
Lie superalgebras see for instance in [4] or [11]), allowing to prove an
explicit character formula for a reasonable class of irreducible finite
dimensional atypical representations.

Acknowledgement. — We are grateful to D. Leites, J. Thierry-Mieg,
A. Sergeev for discussing the problem of atypical modules. Special
thanks are due to I. Skornyakov, Yu. Manin and V. Kac. I. P. thanks
also as the Organizing Committee of the Colloquium in honour of
J.-L. Koszul (Grenoble June 1-6, 1987) for the invitation, as well the
Institut Fourier for hospitality. Finally we are indebted to the referee
for several remarks, which have helped for improving the structure of
the text.

1. Preliminaries and notation.

1.1. Algebraic Preliminaries.

The result of this paper is a natural extension of some results in
the book [13]. In particular all preliminaries needed are presented in
detail in [13]. Since however [13] has not yet appeared, we do not
restrict ourselves to fixing notation but recall some basic preliminary
facts in the hope that this will make our work more readable.

The ground field in this paper is C. The (super )dimension of a
Zrgraded linear space T = To © Ti will be denoted by
dim T: = = dim To + dim Ti • e, e being an odd formal variable with
e2 = 1. The same notation will be used for the (super)dimension of
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supermanifolds. Furthermore for any Zs-graded space T we define the
Zrgraded space FIT as « T with opposite parity», i.e. (nr)o = Ti,
(nr)i= To.

By definition GL(w+ne) is the general linear complex Lie supergroup
of rank m + ns, OSP(m4-n£) is the orthosymplectic Lie supergroup (i.e.
the Lie subsupergroup of GL(m+ne) leavmg invariant an even
nondegenerate (super) symmetric bilinear form on C""^8; in this case
necessarily n=2fe) , Q(m) is the Lie subsupergroup of GL(m+ne) leaving
invariant a n-symmetry (i.e. an odd automorphism y with y^id) of
(^m+rns^ ^^ P(m) is the Lie subsupergroup of GL(m+me) leaving an
odd nondegenerate (super)antisymmetric bilinear form on C'"^, [13],
[137]; gl(m+n£), osp(m+n£), q(m), p(m) denote respectively the Lie
superalgebras of GL(m+ne), OSP(m+ns), Q(m), P(m) :

Throughout the whole paper G will denote one of the above listed
Lie supergroups and g : = Lie G; specifying certain concrete series, we
will write fo short just G = GL,OSP,etc., g = gl.osp, etc. By the
very definition, G and g act on Cm+ne (where m=n for 6'==^(m),
P(m)), and C^"6 will be called the standard representation respectively
G and 9. A Borel subsupergroup (respectively subsuperalgebra) of G
(respectively g) is the identity component of the stabilizer (respectively
simply the stabilizer) of a Zrgraded flag of maximal length in the
standard representation, which is supposed to be isotropic, see [13], [13'],
or [7], in case G = OSP, P(g = osp,p), and n-symmetric for G = Q (9 = q).
Parabolic subsupergroups (subsuperalgebras) are identity components of
stabilizers (simply stabilizers), of isotropic for (7= OSP, P and
n-symmetric for G==Q, flags of arbitrary length in the standard
representation. A Carton subsuperalgebra of g is the centralizer of a
Cartan subalgebra of go. A Carton subsupergroup of G is a connected
Lie subsupergroup H <=-^ G, such that Lie H is a Cartan subsuperalgebra
of Q . For 9 T^ q it turns out that Cartan subsuperalgebras of 9 are
simply Cartan subalgebras of go -> ^d for 9 = q (m) if t) = t)o © I)i c: g
is a Cartan subsuperalgebra, then I)o is a Cartan subalgebra of 90»
dim t)i = (dim t)o) • e, ans t)o belongs to the centre of 1).

Fix now a Cartan subsuperalgebra 1) c: g. If F is any finite
dimensional t)o-semisimple g-module, V = © F(; , set

^eb*o

suppF^ :== %et)?|F^O},

ch F ;= ^ dim^-^
^ 6 SUpp V
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(each V^ is a ^-gTSided space and dim denotes here superdimension).
Considering g itself as the adjoint module, put A : = suppg\{0}. A is
the set of roots of g (with respect to I)), and for 9 ^ q each root space
^ has dimension either 1 or 8. Therefore A = Ao u Ai , where Ao : =
{ ^ e A | d i m ^ = ^ } ; the elements of Ao are by definition the even roots
of Q , and the elements of Ai - the odd roots of 9. For 9 = q each
root space has dimension 1 + s. Assuming however that A = Ao u Ai ,
where Ao are two identical copies of the usual root system of type
^,,,_i, and considering Ao as even and Ai as the odd roots (assuming
in this way dim ga=l for a eAo and dim 9a=c for c x e A i ) , we can
unify this case with all other ones. Furthermore we set

A := { o c e A I - o c ^ A } ,

A := { a e A \ A | ^ A , 2 a ^ A } , A o = A n A o .

A == 0 for 9 ^ p , and A = A for 9 7^ p , 9 7^ osp(m+ns) with
m = 2J + 1 .

The Lie superalgebras gl(m+ne) and osp(m+n8) admit an invariant
nondegenerate even (super)symmetric bilinear form. The form which it
induces on I)*(==^?) will be denoted by ( , ).q(m) does not admit an
eveti invariant nondegenerate form (in particular its Killing form, [3],
[13], [13'], is identically zero), however it admits a nondegenerate
g-in variant pairing 9 x n^ -> C (or equivalently an odd nondegenerate
9-in variant bilinear form). The induced pairing ^ x n^ -^ C will be
also denoted by ( , ). It is easy to show that p(m) admits no invariant
(even or odd) nondegenerate form.

The case g == q has one more essential peculiarity concerning roots.
Each root oc defines here up to a constant a pseudoroot a as an element
of nt)?\{0}, such that

[h,g^] = ^(h).g.,

for any he^ and any ^e(gji, where ^e(9a)o depends only g^.
Denoting the set of pseudoroots by A , and fixing for each a a
representative a e A, we obtain a well defined map

A -> A, a \—> a.

The weights of an arbitrary 9 considered are by definition the
elements of ^. By C^ c: ̂  we denote the chamber of all dominant
(with respect to a fixed Borel subalgebra bo of go? ^o^o) weights,
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which are go, ..-integral, ̂  c= 90 denoting the semisimple part of go.
X e C 4 " iff the irreducible ^-module with highest weight ^ (with respect
of bo) is of finite dimension. C+ will denote the subset of C+ consisting
of all strictly dominant weights.

If a e A l , a weight % is ^-regular iff
- (X.oO ^ 0 for 9 = gl, osp;
- (X,a) ^ 0 for 9 = q.

Furthermore 7 is typical iff ^ is a-regular for any a e A,, and \ is
regular iff

- (X,a) ^ 0 Vex e A for 9 = gl, osp;
- X is typical and Oc,oc),ed ^ 0 VoceAo for 9 == g0.

The notions of oc-regularity, typicality, and regularity for 9 = p will be
defined in 2.2.

Let us discuss briefly some basic properties of roots and Borel
subsuperalgebras. Our considerations will concern actually also the
corresponding Borel subsupergroups since Borel subsupergroups and
subsuperalgebras are in 1-1 correspondence. Throughout the whole paper
we will assume automatically that all Borel or parabolic subsuperalgebras
considered contain ̂ . First of all, set for any p c: 9 (p being a parabolic
subsuperalgebra with p ^ ^)

A(p) := { y e A 9^np^0}, A^(p) := A(p) n A^,

A(p) := { Y e A ( p ) | - y ^ A \ A ( p ) } , A^(p) := A ( p ) n A o .

If p = b, we put

A^b) := A(b), A-(b) := A^-^b),
A^(b) := A^nAo.

The Borel subsuperalgebra b013 is characterized by

1) c b015, A-^b013) = A-(b),

and is called the Borel subsuperalgebra opposite to b (b015 is always well
defined but, as one sees immediately, for 9 = ? A^b013) does not
necessarily coincide with - A-^b)). Furthermore any b induces a partial

0 Here and below ( , )^ denotes the bilinear form on f)o* induced by the Killing
form of go • -' • 6
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ordering ^ on t)? :
b

^ ^ H < ^ > ) i = ^ 4 - ^ y
b yeA-(b)

for X , net)? . Note also that b is determined uniquely not only by
A^b), but also by the set of its simple roots (as usual, aeA^b) is
a simple root of b if an equality a = P + y with (i, y e A + (b) is impossible).

Below we will need the following « superanalogues » of the half sum
of positive roots in the usual case. By definition

P-=|-( I Y + I v)'
\ y e A o ( b ) reAT(b) /

- ! ( v \P& := P ~ 2 ' ( S 7 ) 9

^ye^nATO)) /

Po := ^ • ( Z Y ) f01" any b c: g ; for a parabolic subsuperalgebra p
^ Y e A o ( b ) ^

we put

pp:= (pp)o + (pp)i,(pp)o := ^ • ( S y ) '
z \ Y e A o ( p ) /

(pp^-l-f E vY
^yeAlUAiCp^A) /

M^o 1̂1 denote the Weyl group of go a^ ^ (•) 1̂1 ^ fhe length
function on W^.Wo acts on t)? and on the sets of parabolic and Borel
subsuperalgebras containing t). Furthermore it is essential to recall that
any two Borel subsuperalgebras b, b' c= g with bo = bo and ht b ^ ht b'
(where the height of a Borel subsuperalgebra, [13], [13'], is defined in
the following way : ht b : = 0 for any b in case g + p and ht b : =
m — # (A^(b)nA) in case g=p) can be connected by a chain of odd
reflections and inclusions. We say that two Borel subusperalgebras b,
b7 c: g are connected by an odd reflection iff bo = bo and there exists a
simple odd root a'e A of b\ such that A^(b) n A^b') =
A^b^^a'} = A^b^—a7}; one has an inclusion of Borel subsuperal-
gebras iff simply b c b'. The first is possible for 9 7^ q and the second
is possible only for g = p. In this way for all b, b' with bo = bo and
ht b ^ ht b' there exists a sequence of Borel subsuperalgebras

b = b l b 2 . . . , b k ~ l b k = b\
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such that b1 and b^1 are connected either by an odd reflection or by
an inclusion b1 c: b14'1. Furthermore the above sequence is determined
by the corresponding sequence of roots

(2) &i,a2, ... ,&k-i

where a.eAnb^1), a^A^) ( i f fa^A, -a, e A^)); (it is easy to
show that if g=p and one has an inclusion b c: b 7 , then bo = bo and
A^(b') = A^(b) u {a} for some odd root a e A ) .

1.2. Highest weight modules and their central characters.

Let b <= g be a fixed Borel subsuperalgebra of g. We have an
isomorphism b ^ I) © n, I) being a Cartan subsuperalgebra and n being
a nilpotent subsuperalgebra. One shows straightforwardly that n acts
trivially on any finite dimensional irreducible b-module, and thus, as in
the usual case of Lie algebras, the above isomorphism induces a 1-1
correspondence between irreducible b-modules of finite dimension and
irreducible t)-modules of finite dimension. In this way (since for Q^q
l)=l)o is a Cartan subalgebra of go) for 9 7^ ^ an irreducible b-module
is just 1- or s-dimensional and is determined up to isomorphism by
the weight, by which I)o acts on it, and by its dimension. Such a
b-module will be denoted below by A-5, where^ e t)? and 8 e Z2(dim X,5 = s5).
It turns out moreover that the same notation makes sense also for
irreducible b-modules for 9 = q. These modules are discussed in detail
in [11] and [13], [13'], and the important point is that I)o acts on each
such module by a unique weight and that the module is determined
up to I! by this weight. However in the case 9 = q(m) dim ^§ = k + fcc,
where k depends on m and ^; for a generic X e ^ k = 2 [ ( m - l ) / 2 ] ,
[13], [13-].

Let now V^5) be by definition the irreducible g-module, such that
^s is its b-submodule. In other words X6 is the highest weight space of
Vb(^5) with respect to b. Vb(^5) is not necessarily finite dimensional,
but any irreducible g-module of finite dimension is isomorphic to V^5)
for some ^5. V^5) is G °-integrable, where G° denotes the identity
component of G, iff dim V^ (X5) < oo and ^5 is 2?-integrable. Furthermore
it is essential to note that the inclusion X e C + , or equivalently the
finite dimensionality of the irreducible bo-module with highest weight ^
(with respect to bo), is (necessary but) not sufficient for the finite
dimensionality of Vi, (^s) for an arbitrary b .



852 I. PENKOV AND V. SERGANOVA

The rule of change of the highest vector of an irreducible g-module
under an odd reflection (and an inclusion) of Borel subsuperalgebras
will be essential for us. One has

LEMMA 1. — If b' is a Borel subsuperalgebra of g with b'o = bo, and
a) b and b' are connected by an odd reflection, for any r\ e ̂ , x e Zz

one has an isomorphism of ^-modules

V , ^ ^ [^((n+Y)^1)^ case T| + p^, is y-regular
[V^W) in case r\ + P{) is not y-regular,

where yeA^b') n A^b) (and, as already said, the notion of 7-regularity
for 9 = p is defined in. 2.2); furthermore if v ^ 0 is a highest vector of
y^W) ^ith respectto"by then a highest vector of V^r^) mth respect
to b1 is

— g^v in case T| + pi, is j-regular,
— v in case T| 4- p^ is not j-regular,

g^ being a generator of the root space gy ;
b) b c= b', for any T| e ̂  , x e Zz o^ nas

y^W)=y^w),

and the highest vectors of V^r^) with respect to b and b' coincide.

Comment on the proof. — b) is obvious and the proof of a) is a
nondifficult computation; see [13], [13'], 2.5, Theorem 3. D

Lemma 1 implies the important

COROLLARY 1. — ' L e t

b = b 1 , b 2 , . . . , ^ - 1 , b^h'

be a chain of odd reflections and inclusions, connecting two given Borel
subsuperalgebras b, b' c- g (with b o = = b o ) . Then for an arbitrary X,el)?
one has

where
v,(^)^ W),

^f : = ^ + Z oc^
^^ ; l (X) , . . . , ; / ' (X)

y := 5 + Oc-r-l)mod2
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and
^•l^)? • • • 5 ^/(^

is the maximal subsequence of (2), such that o^ = QC^) ^ A anrf

^ + Pb^ - OC^ - 0^ - . . . - OC^

(w/^ &o : = 0) is not ^-regular for any t = 1, . . . , I ' . Furthermore if
v ^ 0 is a highest vector of V^) with respect to b, then

^f n ^}-v
\ Jr^h(^.),... ,ii,(^) /

is a highest vector of V^6) ^ith respect to V. D

Consider the super-centre Z of the enveloping algebra C/(g). It is
well known that Z acts on any irreducible g-module by a central
character, i.e. by a homomorphism Z->C, see for instance [13], [13'].
The main tool in studing the centre itself and its characters is the
following

THEOREM 1 (A. Sergeev, V. Kac). - Let 9 7^ p.' There exists'an
(Harish-Chandra) injective homomorphism

HC, : Z -^ S\^)

(S- denoting symmetric algebra), such that

imHC = J^^o^loceAl, Xe t )? , and (^a) = 0 ^
9 [(resp. (^o)=0 for 9=^) => /(^+^> = f(K) V reC^ .

The proof see in [10] (some earlier references, are [14] and [6]).

Denote now by 6^ the (super)central character of ^(^§). As it
is shown for instance in [13], [131, this notation 'is well defined, i.e.
G^ depends only on X.+ p^, (for a fixed I)).

LEMMA 2. — Let Q ^ p. The following conditions on ^e^ are
equivalent :

- ^ is typical;
- QX = en ̂  ̂ ^, rj e ̂ ) imp^s r| = w0c) /or ^z c^am w e ^o;
- the homomorphism 7^: -S^o)^ -> C, m^c^ ̂  /, 15 ̂  unf^^

extension of Q1 o HC^ to a character^^S^o)^.
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A natural proof is based on Theorem 1, [13], [13'] (however V.Kac
has used the result already in [4] and [5], before Theorem 1 was
known). D

Next we have

THEOREM 2. — Let b e g be a Borel subusper algebra. Then if
dim ^b(^5) < °o ana ^ + Pb is typical,

(3) ch^)^ dim^
^ sgn w^^

w e Wo

Y ^ sgnw'.w^^o n (1+c^)))-
\ w e Wo Y e A'i(b)n(A'i(b)nA) /

D

(3) has been proven by V. Kac in 1977 for 9 = gl, osp, [4], [5],
and later respectively by D. Leites for 9 = p and by the first author
for g = <?,[11]. There have been several attempts to generalize (3) (in
particular [I], [8], [9], [15], [16], [17]) to the case of an arbitrary finite
dimensional g-module, but although certain effects are already known
(see [13] for a description of the situation), this is still a challenge. In
§ 2 we extend (4) to a natural class of atypical modules, which are
«typical modulo a parabolic subsuperalgebra ».

A final remark concerning central characters of g-modules is that if

(4) 0 -^ E ' -^ E -. E " -> 0

is an exact sequence of g-modules, and E ' and E " admit central
characters ff and Q " , then 9' 9^ 9" implies the splitting of (4) (i.e. in
particular the existence of an isomorphism E ^ E ' @ E " ) . The proof is
almost obvious, see [13], [13']. A consequence we need is, that is V is
a finite dimensional indecomposable g-module, then the central characters
of all its irreducible composition factors coincide.

1.3. Super geometric preliminaries.
We fix the supergeometric objects with which we deal below. For

more details consult [13], [12], and [7]. If G is any of the Lie supergroups
considered in the present paper (G'° is the identity component of 6')
and P <—>. (7° is a parabolic subuspergroup, the universal categorical
quotient (in the category or superschemes) G ° / P exists and is a connected
(complex algebraic) supermanifold. This follows from Manin's construc-
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tion of the super-manifolds of G-flags, [7], because one shows immediately
that the supermanifold of G-flags (i.e. of isotropic flags in case G = OSP,
P, and of n-symmetric flags in case G = Q, see [13] or [7]) in the
standard representation of type equal to the type of the P-invariant
G-flag is nothing but G ° / P . Iff P = B, i.e. iff P is a Borel subsupergroup,
G°/P = G°/B is a supermanifold of G-flags of maximal length.

When P ' runs over all parabolic subsupergroups of G G ° / P ' form
a finite oriented graph with vertices G ° / P ' themselves and edges — all
submersions G ° I P ' -> G ° / P " induced by inclusions P ' c_^ P " c_^ G .
Let us consider in particular the subgraph { G ° / B ' } with vertices G ° I B '
for all possible B ' . If G + P, this graph is fully disjoint, i.e. has no
nontrivial edges (edges different from the ones induced by the identities
B ' = B ' ) , and if G = G° = Q, { G / B ' } consists of a single vertex because
all Borel subsupergroups of Q are conjugated.

For G = P(G=G° but) the structure of { G / B ' } is less trivial; [ G / B ' }
looks in this case like this

m

m-1

G/B,,
I

G I B ' G I B '
I

I
G I B ' " G/B^

I
G/B,,

i.e. it has m + 1 «levels» parametrized by the height of the Borel
subsupergroup, all «levels» are fully disjoint subgraphs, «levels» 0
and m consist each of one homogeneous superspace (the Borel
subsupergroups B, and B^ are described explicitly in 2.2.), and any
two neighbouring «levels » are connected by at least one edge.

Fix now P (—, G and let v- be a finite dimensional P-module. Then
one defines as usual (see [13], Chapter 3) the induced G °-linearized
fi^o/p-module !>. (The geometrical fiber of ^ at the geometrical point
PG(G°/-P)red is nothing but the P-module ^ itself.) In particular for
any integral weight T| , such that the ^-module structure on r|5 extends
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to a P-module structure, r^ is a well defined G ̂ linearized
(P GO ip-module of rank equal rk r^. An explicit description of f^ in ternm
of the tautological flag on G°/P see in [13] or [12]. It is also essential
to note that one can extend the definition of fp to the case of a go,ss-
integral weight (go,ss being the semisimple part of go)? suc^ ^^ ^
admits a Lie P = p-module structure, [13], [12]. In the latter case rf
in only a g-linearized ^o/p-module.

Now we will introduce another parametrization of the sheaves rf,
which will be used below. Define first for any go ,ss-integral weight T|
and any Borel subsuperalgebra b e g the c^o ss^tegr^l weight r^(b) in
the following way. Consider the Borel subsuperalgebra w^(b), where
^m ^ ^o is the element of maximal length, and connect it with b0^ by
a chain of odd reflections and inclusions (this is possible since
AoOUW-Ao^^-AoCb), 1.1; note also for G=Q simply
w^b)^011!). Let this chain be

w,(b)=b1 , b 2 , . . . , ^ - 1 , b^b011.

Then if ^ := w^(r|), set

r|z(b) :=^ ,

^/ being defined by the procedure of Corollary 1. Invariantly r|^(b) is
determined uniquely from the isomorphism

,̂(6) (Wm(Tl)5) = ^"POl^)

for some 8' e Zg (for 6'=<0 r^(b)=w^(r|)). The notation r|/(b) is
motivated by the fact that if ^(ri5) < oo, then r|^(b) is simply the
lowest weight of l^b^5) ^th respect to b (the latter being nothing but
the highest weight of ^Cn5) with respect to b^).

Now we set

OG.^) -W

for any Qo^ss-mtegTal weight ' k . Furthermore let us introduce the sets

L* _ \'\ K* ^ ls ^0 ss-1^^2^ and the b-module^
9P ^ [ et)o ^,(b)5' admits a p-module structure J

Cp^C;) := C^^^C^I)?).
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By the very definition of 1)^, if ^e^ , we can push down ^/B^5)
to G°/P via the canonical submersion

7t: G°/B -> G°/P

and obtain in this way a well defined g-linearized
^G°/p-module ^°/p(^8) of rank equal to rk ^/B^5).

Let us discuss now briefly the cohomological properties of
OGJP^) (where possibly P=B). First of all ^°/p(^5) has a standard
nitration with composition factors of the form

where
^*(GO/P)^/(G»/P)) (g) (^/pa5))^ (2),

(^p(^)Ld ̂  C^^' ® ^Go/p^d^W)57).

(We assume ^^IP^W) being defined in the same manner as
^(G-IP)W)- However, since there are no odd reflections and inclusions
between Borel subgroups of 6'red, we have simply

^(GO/P^OT) := w^r, rk ^Go/p)^(rT) = e-

for any G considered). Furthermore one shows easily that for each
fe, k = 0, . . . , (rk A^Go/p^^Go/p^/s, the pull-back

7l*ed(^'(^*Go/p)^/(Go/p)) ® (^o/p(^)),ed)

admits a filtration with composition factors

D f w /"> ^M— V 'V \§ /+(/c)mod2 \^(Go/B^ed^m^^b) ^ Yj I,
\ y / e J /

/ = (Yi, . ..,yJ^ being an arbitrary fe-tuple of different elements of
^I'WUAl"^)^^?)) (each composition factor having multiplicity
dim^b)5'). But it is a consequence of Botfs theorem, [2], that the
cohomology of any ^co/p^-module ^ ' coincides with the cohomology
of 7t*ed^\ and the cohomology of the line bundles

^(Go/B^df^W- E y^^w1110'12) is well known. All this enables us
\ Y r e J /

(2) If X is a supermanifold and i^: X^ ̂  X is the canonical closed immersion,
N^edlx denotes the conormal bundle of X^ in X, and Fred := i^F for any
^module F .
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to establish some first basic facts about the cohomology of ^o/p(^5).
Denote by Ech ^f the Euler characteristic of formal characters of
cohomologies of a g-linearized fi^o/p-module ^ . (Note that Ech ^
depends only on the go-structure on ^ , i.e. Ech ^ is well defined
actually for any (^-linearized ^o/p-module ^f.) Combining the above

considerations with Bott's theorem and Frobenius duality (see [13],
Chapter 4) one proves

PROPOSITION 1. — For any 'ke^
a) r(^°/p(^5)) ls an indecomposable ^-module;
b) the conditions r(^°/p(^8)) ^ 0 and dim V^) < oo for b e ?

are equivalent, and moreover if they are satisfied, one has a canonical
injection of Q-modules

©,: F,^5) c_ r(^p(?i8));
c) one has

(5) Ech OG.IP^) =
dim Ki(bY'

^ sgnw^"^
w' e Wo

.( ^ sgnw'.w^^^-^ f] ( l+e^- 7))) .
V ^ e ^ o YeAi(6)\(Ai(b)nAi(p)) /

d) For a generic "k of ̂  , i.e. if 'k belongs to a certain Zariski-open
subset of ̂ ,

H'^o^)) = 0 for i^ ;(w),

^here w e WQ is defined by the requirement that w(^(b)—po) is
antidominant, i.e. — w(^^(b)—po) e C'^. (For a generic 'k of t)^ ;̂5
determines w uniquely.) D

The first essential fact of « super Borel-Weil-Bott theory » is

THEOREM 3. — Let B c_). G be a Borel subsuper group, such that
A c: A(p) for G = P. If ^ + pp i5 typical, and in case G == P ako
regular, see 2.2, t/ien

H'^GOIB^)) == 0 /or f ^ <(w),
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\vhere — w(^/(b)—pp)eC+ , and one has

H1^^^^)) == ^op^w^^-p^+p,)5^)

= ^((^+Pb)-Pb)so")),

where by definition w'^+p^eC'^ and 5(w), 5 (w / )eZ2.

The theorem is proved in detail in [13], (and in [12] (3)), where one
can find also a generalization of the result for an arbitrary Borel
subsupergroup of P. D

Let us complete this section by a remark. First of all (using
Corollary 1) one shows straightforwardly that for a generic X, of Cp'
and any b e ? ^(b) = w^(^+(pp)i) + (pp)i. Second, one checks that
setting

A,(b)p :={YeA,-(b)|y^(A(p))}

and
^(b)=w,()i+(pp)J+(pph,

we have

dim^(b)57

(6) ———————————
^ sgnw^-^

w' e Wo

. ( ^ sgnv/.w^W-^ n (1+8^-7)))
V w ' e l V o yeAi(b)\(Ai(b)nAi(p)nA) ^

==———dlm^———f S sgnw-.w-^Po. Ft (1+^))V
Y Sgn W^^7^^ v M;/ e wo yeAi(b)p\(Ai(b)pnA) /

W7 6 Wo

Therefore Proposition 1 implies that for 9 ^ p (and again for a generic
X of Cp') ch Fb^5) = (chim©^) ^ expression (6), because in this case
A = 0 and (6) is nothing but the right hand side of (5). It turns out
however that the latter inequality is valid also for 9 = p, and in the
subsequent section we prove that for a generic K e C ^ this is an
equality.

(3) Unfortunately the result of [12] which concerns the case G = P needs a modification ;
compare Theorem 2 in [12] with Theorem 4 below.
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2. The result: cohomology of ^°/p(^5)
for a generic ^ of I)j* and a character formula.

Fix now a Borel subgroup B^ of G'red. Then for any parabolic
subsupergroup P of G with Pred (=-> ^red and for any w' e ^r P^ will
denote a parabolic subsuperogroup of G, such that py/ = Lie P^ is a
minimal parabolic subsuperalgebra of g with

Lie^ed c= Pu,7, A(p^) =3 {w\a)| aeA(p), - cxeA(p)}.
(P^/ is not necessarily uniquely defined; for instance for P = B B^i is
an arbitrary Borel subsupergroup containing 2?red)- The main result of
our paper is

THEOREM 4. — Assume the pair B <—^ P being fixed. If 'k is a generic
element of ^ , _ ^ : = w(^(b)-pp) + pp^ (for some pj, where
— w(X^(b)—po) e C'^ , and by, 15 a Borel subsuperalgebra of p^ with
t) c: by,, then the single nonzero cohomology group H^^Oo^pQ^)) of
(^p(^) (4);

— is isomorphic to ^^(^x) ^ V^W'), ̂ here by definition H/(bu,) = p^
and x, x 'eZg if G = GL, OSP, (?; m ^e special case G = Q
a sufficient condition for this to be satisfied is
(^a),ed^O^,a)VaeA,-(b)p;

— admits a ^-filtration mth composition factors Vy^^-\-
x'+^^)mod2

^2^.w(e^.)) v i / ) y^r a certain x 'eZz , ^nd /or all possible
i

^£{0,1}, where -2s^ runs over the set (AnAr^YAnAi'^n Ai(p))
if G=P. In particular for Ac=A(p) H^a-ip^))- V^;)= F,J^),
w^r^ 05 m a) H/(by,) =H/ ) .

Although we have given a separate formulation of Theorem 2 for
G = P, it is clear that the claim for the case G = P is simply more
general than the claim for G = GL, OSP, Q; indeed replacing in the
claim for P 9 by gl, osp, or q, we obtain the corresponding statement
just because A == 0 in each of these cases. Unfortunately we are not
able to give a unified proof of both claims. The reason is that the
technique of central characters of £/(g)-modules is well developed still
only for 9 7^ p • But since, as we shall see below, p is in some sense
simpler than osp or q, we are able to prove Theorem 2 for 9 === p not

(4) For simplicity we assume already that H^Go-spO^)) = 0 Vf ^ l(w) by Proposi-
tion 1, d).
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usiag a description of the centre of U (9) and of its characters. Therefore
our plaa of proof is the following: first, using the results of 1.2, we
will establish Theorem 2 for G ^ P, and then we will present a longer
but mry explicit proof for G = P.

Proof of Theorem 2. A: G = GL, OSP, Q.

Step Al. Assume w = id. Then by, = b and one has the injection
©s^ ^b^5) ̂  r^o^5)). We claim now that in this case €)„ is an
isomorphism for a generic X of ^, i.e. for ^ belonging to a Zariski-
open set in ^. Indeed, if V^) c-̂  cokerQ^, then

(7) W = Ub) - S x^ O' ^e {°5 ̂ 5

Y;eAi(b)\(AT(b)nAi(p))-

because the considerations of 1.3 imply that r\(90° ipQ^)) has a
Qo-module filtration with irreducible composition factors of the form

r^^o^^((w,(^(b) - ^ Y^)f.(^)mod2))

Y i £ j

= ^((^(b)- Z y^^(^)-d2^
Y i 6 J

(the latter equality follows from Bott's theorem, [2]), and therefore (7)
is satisfied for the weight of any b^-singular vector in r(^G°/p(^5)) •
Moreover by Proposition 1, a) r^0/?^-5)) ls indecomposable, the
central characters of all its irreducible composition factors coincide, 1.2,
and thus

(8) 9^pb=e^p&.
Now we will show that, for a generic ^ of ^, (8) together with (7)
implies ^ = X , i.e. coker ©5, = 0. A precise assumption on X , under
which this is true, is

(9) <^+Pb,a) + 0 VaeAi(b)p n A in case G = GL, OSP;
(X,oc) + 0 VaeAi(b)p in case G = Q.

Note first that G^^ = e^^011 because ^(b) is the lowest weight
of F^8), i.e. F^5) = ^(^/(t>f). Since W is a p-module, Q^^^^015

factors through the natural surjection Z -> Z^g ) , where gp is the

(5) In the cases considered A~(b) = — A^b) for any b , thus in (7) one can replace
all three minus signs by plus signs.
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classical Lie superalgebra, defined by the requirements :
0) bfep)* ^ t)*/{linear envelope of A(p) for 9 = gl, osp and of

A ( p ) © { a | a e A ( p ) } for 9 = q};
(ii) A(g?) is the image of A in t)(9p)?.

Denote now by r}' the image of r(et)? in l)(9p)?. Then (9) implies
that the characters of ZU(Q > Q^i^^ and QW^^V coincide. Next
we note that (10) is equivalent to

(10) (^(b)+pb°p,a) i- 0 VaeAi(p) n A in case G = GL, OSP,
(^,a) + OVaeAi (p ) in case G == g.

But (10) implies now that Q^i^^Y is a typical character of Z^g ) ,
i.e. that Q^i^^Y o HC^ admits a unique extension to a character^
^'OKSp)^9^)- Therefore applying Lemma 2 in 1.2 to gp, we obtain

(11) VbY-W,

since (^z^+pbop)' and (^(b)+pi,°py are both dominant with respect to
the image of b^ in g?. Furthermore (11) and (7) give immediately
^z(^) = Sz^)? or equivalently X, = ^, which is a contradiction. In this
way coker ©^ = 0 and ©^ is an isomorphism in the situation considered.

Step Al. Let now \ be a generic element of ^. Then if
- w(^(b)- po) e C + , H^^caipQ^)) is the unique nonzero cohomology
group of ^G°/p(^5) and

(12) (-1)^ Ech (9^p = ch ̂ ^(^o/p^5))

-(-y».^"»W___Y ^ „=(-1)^).——dimX^——/ ^ sgnw'.w'^'-o

^ sgnw'e"''^"^ V"''6W ' '

n (1+ee-^))).
fA'i('b)nAi('D)') yyeAl(6)\(Ai(b)nAi(p))

The essential point is to note now that ueCp ' (where u/(b )=u;) and
(9G°ip^(y^) is a 9-linearized sheaf on G°/P^ with

7fl(^o^(^x))=0, V i > 0

for a generic )i. Moreover by Step 1 we have

(13) r^pj^)) = F.(^) = ^op(^).
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This observation proves the claim of the Theorem since one checks
immediately that in the case considered

ch H^^^p^)) = ch r^o^Oi-))

for a certain x e Z z , and an irreducible g-module is determined up to
isomorphism (or up to II for G=Q) by its formal character. It remains
to note only that for G = Q the condition (X,a)red ^ 0 for
Xel)p*, aeAi(b)p, implies ^'(^/p^5)) == 0 Vj + ;(w) and moreover
also H'^G^ipwW) = 0 , Vi > 0. This can be checked straighforwardly
and we leave the details to the reader. Since furthermore condition (9)
is sufficient for establishing (13), our claim is proved also for G = Q.

2.2. The case G = P.

Before turning to the proof for the remaining series G = P, we will
study in more detail the structure of 9 = p. The crucial property needed
below is that 9 admits a Z-gradation of the form 9 = Q(_^ @ g^) © 9(i) ,
where 9(o) == 9o and fed), 9(i)] ^ fe(-i), 9(-i)] = 0. Indeed, in matrix
form 9 = p(m) can be represented as the set of (m+m) x (m+m) block
matrices

A B
A ==

C D

with (usual supercommutator, see [3], [5], or [13], [13'], and) D = - A^
B ^ - B ^ C=C\ and setting 9^ = {A e 9 A=D=B=0},
9(-D = {A eg A=:D=C=0}, one checks immediately that we obtain a
Z-gradation of 9 with the desired properties. (A Z-gradation with the
same properties admit also cj=gl(m+n£) and § = osp (2 + Iks). Even
more in the latter cases the situation is simpler because dimcj(_i ) =
dim 9(i), while for the above introduced Z-gradation of
9 = p(m) dim 9(i) - dim9(-i) = m - 8 . (The effect is due of course to
the fact that A=0 for gl(m+n8), osp (2+2faQ, but A^0 for 9=p) .
The approach applied below to 9 == p can be applied also in a very
similar and essentially simpler manner also to gl (m + nc), osp (2 + 2/cs).
This leads to an alternative proof of Theorem 2 for gl (m + ns) and
osp(2+2te), which is more direct in the sense that it does not use a
description of the centre of the enveloping algebra).

Choosing furthermore I) = t)o c= 9 to be the sub(super)algebra of
diagonal matrices, introducing standard coordinates ^^ in t)* (as
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in [13], [13']), and setting

£, := ( 0 , . . . , 0 , l , 0 , . . . , 0 ) e l ) * , i= 1, . . . , m ,
we have

y = ^ E^)£j^)eC^
I c J

A = {£,-£„ ±(£,+8,.),f^,-2e,},

'A = {-2cJ, A = A\A .
The conditions

b, ^ I), A(brf) = {£,-8, for i<j, -8,-8,},
bad :D ^), A(baa) = {£,-£„ for i</,£,+^ for 1^7}

determine uniquely respectively the, distinguished and antidistinguished
Borel subsuperalgebra containing t). (The supergroups B^ and B^ are
defined setting Lie ̂  := b^, Lie 5^ := b^). The simple roots 'of b^
and barf are respectively :

b r f : {-2£i ,£i-82, . . . ,£^- i -£^},

bad ^ {£1 - £2, . . . , £^_ i - 8^, e^_ i + 8^} ;

furthermore we put for short p, := p^, p^ := p,^.

Set now b :== b^, b7 := b0^ and fix sequence (2) from 1.1 to be
the sequence

- 28i, - 81 - 82, - 282, - 8i - 83, - 82 - 83, - 283, . . . ,

^w-l £m ? ~ 28^

(the roots -8,-8,, i^j, correspond to odd reflections and the roots
-2e, correspond to inclusions). Let furthermore

(14) ^1 ,002 , . . . , o c ^ I == k - 1 — # A

be the subsequence of (2) (in the concrete case when b^^ and
b^b^) consisting of elements of A^b^A.

If X e C + , we define the subsequence of Qc, b^-marked roots of (14)
as the maximal subsequence Pi, . . . , |3, of (14), for which

(X-Pi- . . . -P.- i)^=a-Pi- . . .-P.-i)^+ 1(6)

(6) For any weight T( e ^* ̂  denotes here and below its Mh standard coordinate.
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for any s = 1, . . . , r , where (3s = — e, — e^, ^ > 75 (and P o : = 0).
Denote by M^ the set {(3i, ...,?,.}, by P°i, . . . , ^°p - the subsequence
of (14) consisting of non — (^py^-marked roots (r+;?=?), and by
A^- the set {PI, . . . , P;}.

More generally, if b c: g = p(m) is a Borel subsuperalgebra with
bo = (bS^o? ^d X e ̂ + ? we w1^ ^y ^at p e Ai~(b) n A is (^b)-marked
iff there exists a sequence Pi, . . . , P^ , P;e Ai'(P) n A, with P == P^ , and
such that for any I = 0, . . . ,t — 1

fx-EpA^i)=fx-EP.\^)+i,\ i / \ i /
where (Po=0 and) P /+ i= ±(8^^^+c,^^) , fe^i > 7 / + i . The set of (^,b)-
marked roots (in this more general sense) will be denoted by M^ and
the set (Ai-(b)nA)\M^-byA^.

In the special case when ^ e C + and b = b^ or b = bad one can
compute all (^,b)-marked roots using only a fixed sequence of roots.
Indeed one proves straightforwardly (by induction on m)

LEMMA 3. — For any ^ e C +

, ̂  fM, for b = b^
^ ^M, /or b=b^ ,

-where one defines M\ in the same way as M^, replacing (14) by the
sequence

(14') a'i :=^ - a^a; :== - a^i, ... , a; := - ai. D

(%,b)-marked roots are closely related to the procedure of Corollary 1.
In particular one checks immediately (and this will be essential below)
that if b = b^ and b' == b^§, then Corollary 1 claims nothing but the

/ / n v X + ( # A ^ _ p ^ ) m o d 2 \

existence of an isomorphism ^(^ x )^^^((^+ E r! ) )
for any ^ with dim V^) < oo . vv "^

It remains to define the notions of a-regularity and typicality for
the case 9 == p : a weight ^ of p is called:

— ^-regular for a e Ai = Ai\A iff

Xoo ^ X(^)» where a ^ ± (£s+e^);
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- typical iff

X(s) ^ X(^) + 1 Vs, s7, 1 ̂  5, 57 ^ m ;

(for x^C^ typicality is equivalent to the condition MS= 0);
— regular iff

X(.) ^ X(.'), X(s) ^ X(^) + 1, /(,) ^ ̂  + 2, ^ ^ ̂  + 3

V5, s ' , 1 ̂  s, s ' ^ m.
Now we are able to continue the

Proof of Theorem 2. £: G = P. - Without loss of generality we
can assume in the rest of the proof that B^ = (B,)^. Furthermore
if b = Lie B and dim V^(^") < oo for some ne t )? , we define the
weights Hrf and ^ from the isomorphisms F^op (y^) ^ V^(\\^') ^
^(^J).

Step 51 : Let w = id and B == ^(b=bj. Using a different argument,
we will show that ©„ is an isomorphism for a generic ^e^ also in
this situation.

First of all one checks immediately that ^eC^ implies here
~ ^d-pa = ~ A^)+pbop c ^WVAr^nA^nA), and for a generic
^ of C; we have obviously - A^-p^ = Anb)\(Ar(b)nAi(p)nA). In
order to prove that ©^ is an isomorphism it suffices to show that
each irreducible composition factor F^p((^(b)- V ^'+(#1)^2^ ^

\iel

n^G/pf^5)) is a go-component of im©^, i.e. to establish the inequality

(15) ch W) ^ ch F(6^p(^)) = expression (6).

Assume now V^) c-, coker ©,. Then (7) is satisfied also in
our case. Furthermore for a generic ^ of C+

~ ^d-Pd c A^ (b)\(Al~ (b)nAi(p)nA) for any ^ e C + satisfying (7\
because for a fixed R e A ^ the condition P ^ - ^ _ p ^ is an open
condition on X. But (as we have already noted) Corollary 1 gives now
^ad .'= ^d + ^ T|, and ^-p^ ^ ^^-p^ together with (7) implies

^^d-pd

(16) ^ ^ ̂ ,
^d

which is impossible because the multiplicity of ̂  in ch F(^o°/p(^5))
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is equal 8s'" and for each ^ e supp r(^p(X5)), ̂  ̂ , one has

^ > ̂ .
&ad

This contradiction implies coker e, = 0, i.e. the claim of the Theorem
in the case considered.

Step Bl: Let now w = id, but B c-, P be an arbitrary pair (with
2?red=C8d)red)- By Proposition 1, c)

(17) chr(^p(^))=————£5—————
E sgnw^"^

u/ e Wo

. ( E sgn^.w^^o . [̂ (I+^-Y))\
v M;/6 wo Y<=Al(b)\(AT(b)nAi(p)) /

and in this case the right hand side of (17) is equal to

vf £5/ v /L[————————- . ^ sgnw
lki E sgnw^^'^Po) ^e^o

W' 6 Wo

/ ^(b)-po+^2/fc.EA. \

' ^ ( ( e - ( ' n (l+s^-7)) ,
^Q^Q v YeAi(b)\(Ai(b)nAi(p)nA) /

(AnAr(b))\(AnA,-(b)nA,(p))={-2£^,...,-2£,J,^< . . . <fe,

and E denotes the sum over all possible ^. e {0,1}, f = 1, . . . , r . Next
^,

we observe that r^/p^6)) is endowed with a natural g-filtration,
among the composition factors of which one finds b^-highest weight
modules with highest weights running over {^(b)+ ^2^..^.} for all

('
possible ^.e{0,l}. Indeed im ©^ is already the first factor of our
filtration. Considering furthermore r^/p^5))/™ ©„, we see that for
a generic P ieC^ ^(b) + 2s^e suppr^^/p^5))/™ ©, (since evidently
for a generic )i of C^ ^(b)+2e^esuppr(^p(5i5)) but ^(b)+
2e^ ^ supp (im ©,= ̂ 8))), and that (?l,(b)+28^)§/+l is a b^-submodule
of r^G/p^5))/™ ©^ (because ^(b)+2c^ is maximal in
supp^(^G/p(^8))/im©^ with respect to the partial ordering ^) . Denote

b°P

by ^bop((^(b)+2e^)5/+l) the highest weight submodule of
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r^o/p^8))/™ ©^ geaerated by (^(b)+2e^)5'+l. Ordering now the
weights ^(b).+ ^ 2?fc..s; in the way

i

X,(b) + 2e^, ?^(b) + 2e^, . . . , ̂ (b) + 2e^,
(

X,(b^ + 2e^ + 2e^, . . . , ?^(b) + ^ 2e^,
(=1

and continuing the above process, i.e. passing to the module
^(^G^^ImQ^IV^^^-^l^k.f^1) and so on, one obtains the
desired filtetiw..

Our fairthea] observation is that again for a generic 'k of C^
- A^p,op,c Ar(b)\(Ai-(b)nA,(p)),

and ev^i more that in mr case
Ai[(b)\(A^(b)n&i(p)nAi) = -A^+^e^+p^p

fon ^ g^ienfe- &. (rf C^ and) arbitrary ^e{0,l}. Moreover (using
C^roltey 1s) QW efaeeks iiamediately that ^ + ̂ . 2^^&, is the highest

^fz^.)"10^
weight wth respect to V/ of Fi,op((^(b)+ ^ 2^.e^.) v t / ) for

i
arbitrary 4^{&^}- Now the argument from Step 51 (applied conse-
cutively to the composition factors of the filtration) implies here

/ \ y+(^2lk} mod 2
5"+ ^lk )mod2 c \ i 7

ch^((X,+l:24^,) v l 7 )^—————————
t ^ sgnw /e" ; (-po )

u;7 e Wo

( ( ^-Po+£2^ — \\
. ^ sgnw\w^ t n (1+e^)
V ^ e W o \ ye^+l:2^..^.-p^ 7/

for a. generic ^ of Cy and any ^., or equivalently

/ \ 5"+(^4)mod2
§'+ ̂  Jmod2 g \ c 7

chr,.((W+i;2W ^ ^ )^ ^ ^̂ ..,-..,
w1 eWo

( ^ ( ^(t>)-Po+£^,ek,
. ( ^ sgn w'. w' i e

. n o^-))).
ye - A^^+E^ e* +pb°P=A-i(l»)\(A^(b)nA-i(p)^A) / /
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Therefore

chr(^p(^6))
5'+ ^4. mod 2

e v ' /

.V__________________( ^ , ^(b)-Po+S/^,
^^——————————( L s g n w . w ^ ?

^ ^ sgnw^"^"^ v M/6lyo

u/ e Wo

n (l+se-7))')-
yeAnb)\(Ai(6)n5i(p)nA) • /

But the already constructed nitration on r(^G/p(^5)) gi^es

chr(^/p(^)) < ̂ ch ^p((^(b)+i;2^)5'<E^mod2),
^,

which implies

§'+fz^.)mod2
chF^((X,(b)+^2^,) ^ '' )

!

5 '+ f y /A . )mod2
=chF,op((^(&)+^%^) ^ t ' }

i

for all ^.e{0,l}, and even more that the composition factors of our
filtration are precisely the g-modules

F,op((^(b)+^ ̂ e^)5'^1^1110'2)
;

for arbitrary l^e{0,l}. In this way the proof of our Theorem is
completed for the case \v = id.

Step B3: Let now X be a generic element of ^ (and B c-̂  P be
an arbitrary pair with ^red=(^)red. Then exactly as in St^pA2,
H\(9aip(^)) - 0 for i ̂  /(w), (-1)^ Ech ^/p(^) is given by for-
mula (12), and Qoip^) is a well defined (and here even more invertible !)
g-linearized sheaf on G°/P^ with H ' ^ G / P ^ ) ) == 0 V? > 0. Furthermore
Step B2 implies that in our case F^/p^u^)) admits a g-filtration with
composition factors

x / +(y /J^ . )mod2
^((Uz+Z2^) ^ 7 )K^K^

i
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for all possible ?^.e{0,l}, where — 2e^. runs over
(AnA^b^^AnA^b^n&^py,)). However, in order to complete the
proof, we need here an extra argument. More precisely, using the
explicit form of the right hand side of (12) one constructs similarly to
StepB2 a natural filtration on H^^^G/pO^)), the composition factors
of which are quotients of the Verma modules

%' + f V I,, } mod 2
^p((H,+^,.w(e,,)) v l 1 ) )(8)

i

for all possible ?^e{0,l}, where — 2e^. runs now over
(AnAi"(b))\(AnAi'(b)nAi(p)) and x e Z g . (Indeed one checks imme-
diately that nf is a bSf-submodule of H^^^oipQ^)) for a certain
x ' eZz , then that (^^+28^)^+l for 7 = min {;o|w(8^. )=E^ ,
- 28^.e(Anb)nA)\(Ai-(b)nAi(p)nA}, f = l , .. . , ^ , is a b^-sub-
module of the quotient ^^(fi^/p^^MQ-inodule generated by |if),
etc., i.e. one carries out the same procedure as in Step B2). The crucial
observation in that now the filtration of r^^/py,^)) implies for a
generic r| e C^

^'+^lk^)mod2

^ x'+fi:;A,)mod2 £

ch^p((Ti,+^2^w(s^)) v i 7 )=——————————
^ sgnw^/(-'po)

W' 6 WQ

( T^+^2/fc.w(£A.)-Po ___ \

•( ^ sgnw'.w'^ t n (^e^-7)))-
^ w / e ^o YeAT(bu,)\(A"i(bu,)nAi(pu,)nA) -/

Therefore we obtain that the composition factors of H^^^oipO^))
coincide with

.-, x '+f^.)mod2
^p((Hz+Z2^..(£^.)) v i v )

i

for all possible /^., which completes the proof of the Theorem. D

Theorem 4 implies

(8) For any TI e t)^ and any T| one defines the Verma module ^(Tl8) setting
^(ri5) :== ^(9)®^)^.
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COROLLARY 2. - Let x = gl, osp, 9, p, and t) c b c p be fixed.
Then for a generic ^ of C^ (i.e. for X belonging to a Zariski-open subset
of Cp+) one has

(18) chW)=——— d i m ^
^ sgn W^^^PO)

M/e WQ

.( ^ sgnw^^o. ]"] ( I+^Y))V
V U / 6 W O Y6Ai(b),\(Ai(b),nA) /

Zn the special case \vhen 9 = q a sufficient condition (18) to be satisfied
is (^,a),ed ̂  0 ^ (^,a) VaeAi(b)p.

Proo/. - By Proposition 1, c) 7r(^°/p(^)) = 0 for i > 0 implies
that ch r(^<>/p(^5)) equals to the right hand side of (5). Furthermore
if 9 ^ p , Theorem 4 gives r(^°/p(^)) = ^6) for a generic
^eCp^ and (since the condition ^(^G0/?^5))^ for f > 0 is also an
open condition on K e C ^ ) we obtain in this way that (for a generic
^eCp^chF^5) is given by the right hand side of (5). (According to
Theorem 4, for Q=q the condition (^,a)red^0^(?i,a) Va e Ai(b)p, together
with ^eCp^ implies r(^°/p(^))^ ^b(^8), ^^l(^GO/p(^5))=0 for i>0,
and therefore it is also sufficient for the equality ch ^b(^)= right hand
side of (5)). But for 9 ^ p A = 0 and, according to the remark at the
end of §1, the right hand side of (5) is equal to the right hand side
of (6), i.e. to the right hand of (18). This proves our claim for 9 ^ p.
If now 9 = p, the above argument remains valid in the special case
when bd c: p . However in Step B2 of the proof of Theorem 4 we have
already generalized practically the same argument to an arbitrary pair
b c: p . Indeed the inequality

S'+(^l,}mod2

_ § '+ (^^ .mod2 e v i /

chF,op((^(b)+^2^.) ^ t ' )^———————————
^ sgnvv/^-^

w' e WQ

( ^ , , ^^-Po^^. \.1 \ s g n w . w ( 6 ? ' . Y[ (I+^,-Y))
V M / ( = W O YeA-[(b)\(Ai(b)nAi(p)nA) /

from Step B2 together with Proposition 1, the result of Step B2, and
the remark at the end of § 1 imply the claim of Corollary 2 also for
9 = P D
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Corollary 2 is obviously an extension of Theorem 2 to modules,
which are « typical modulo p ». The precise formulation of this typicality
condition could naturally be the requirement (9), however in the proof
of (18) we use a slightly stranger .condif ion, encoded in the requirement
that H\(9G.ipQ^)) = 0 Vf > 0. The situation is most simple for G = <?,
where the condition dim V^Q^) < oo for Xe'Cp' (which is equivalent
to (^a)red^O VaeAr(b)p) implies automatically H^G-ip^)) = 0
Vf > 0. Therefore if 9 == q, the result .©f Corollary .1 is precisely an
extension of the result of [11] to weights «typical modulo p » (foirouia (18)
Ybei;ng in this special case nothing but a formula obtained first by
Sergeev m the special situation of irreducible submodules of the tensor
algebra of the standard representation, [15]).
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