We show that every Banach space which is an -ideal in its bidual has the property of Pelczynski. Several consequences are mentioned.
Nous montrons que tout espace de Banach qui est -idéal de son bidual a la propriété de A. Pelczynski, et mentionnons quelques conséquences.
@article{AIF_1989__39_2_361_0, author = {Godefroy, Gilles and Li, D.}, title = {Banach spaces which are $M$-ideals in their bidual have property $(u)$}, journal = {Annales de l'Institut Fourier}, pages = {361--371}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {2}, year = {1989}, doi = {10.5802/aif.1170}, zbl = {0659.46014}, mrnumber = {90j:46020}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1170/} }
TY - JOUR AU - Godefroy, Gilles AU - Li, D. TI - Banach spaces which are $M$-ideals in their bidual have property $(u)$ JO - Annales de l'Institut Fourier PY - 1989 SP - 361 EP - 371 VL - 39 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1170/ DO - 10.5802/aif.1170 LA - en ID - AIF_1989__39_2_361_0 ER -
%0 Journal Article %A Godefroy, Gilles %A Li, D. %T Banach spaces which are $M$-ideals in their bidual have property $(u)$ %J Annales de l'Institut Fourier %D 1989 %P 361-371 %V 39 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1170/ %R 10.5802/aif.1170 %G en %F AIF_1989__39_2_361_0
Godefroy, Gilles; Li, D. Banach spaces which are $M$-ideals in their bidual have property $(u)$. Annales de l'Institut Fourier, Volume 39 (1989) no. 2, pp. 361-371. doi : 10.5802/aif.1170. https://aif.centre-mersenne.org/articles/10.5802/aif.1170/
[1] Structure in real Banach spaces I, Ann. of Math., 96 (1972), 98-128. | MR | Zbl
, ,[2] M-structure and the Banach-Stone theorem, Lecture Notes in Mathematics 736, Springer-Verlag (1977). | MR | Zbl
,[3] Banach spaces which are proper M-ideals, Studia Mathematica, 81 (1985), 159-169. | MR | Zbl
, ,[4] An ordering of Banach spaces, Pacific J. of Maths, 108, 1 (1983), 83-98. | MR | Zbl
,[5] On Riesz subsets of abelian discrete groups, Israel J. of Maths, 61, 3 (1988), 301-331. | MR | Zbl
,[6] Weakly unconditionally convergent series in M-ideals, Math. Scand., to appear. | Zbl
, ,[7] Nouvelles classes d'espaces de Banach à predual unique, Séminaire d'Ana. Fonct. de l'École Polytechnique, Exposé n° 6 (1980/1981). | Numdam | Zbl
, ,[8] Existence and uniqueness of isometric preduals : a survey, in Banach space Theory, Proceedings of a Research workshop held July 5-25, 1987, Contemporary Mathematics vol. 85 (1989), 131-194. | Zbl
,[9] Some natural families of M-ideals, to appear. | Zbl
, ,[10] On spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc., 283-1 (1984), 253-264. | MR | Zbl
, ,[11] M-ideals of compact operators in classical Banach spaces, Math. Scand., 44 (1979), 207-217. | EuDML | MR | Zbl
,[12] Classical Banach spaces, Vol. II, Springer-Verlag (1979). | MR | Zbl
, ,[13] Produits tensoriels projectifs d'espaces de Banach faiblement sequentiellement complets, Coll. Math., 36-2 (1976), 255-267. | EuDML | MR | Zbl
,[14] Banach spaces on which every unconditionally convergent operator is weakly compact, Bull. Acad. Pol. Sciences, 10 (1962), 641-648. | MR | Zbl
,[15] Applications of convexity and M-ideal theory to quotient Banach algebras, Quart. J. of Maths. Oxford, 2-30 (1978), 365-384. | Zbl
, ,Cited by Sources: