It is shown that the -fine topology defined via a Wiener criterion is the coarsest topology making all supersolutions to the -Laplace equation
continuous. Fine limits of quasiregular and BLD mappings are also studied.
Il est démontré que la topologie fine de type définie à l’aide d’un critère de Wiener est la moins fine topologie rendant continues toutes les sursolutions de l’équation -harmonique
Les limites fines d’applications quasi-régulières et de type BLD sont aussi étudiées.
@article{AIF_1989__39_2_293_0,
author = {Heinonen, Juha and Kilpel\"ainen, Terro and Martio, Olli},
title = {Fine topology and quasilinear elliptic equations},
journal = {Annales de l'Institut Fourier},
pages = {293--318},
year = {1989},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {39},
number = {2},
doi = {10.5802/aif.1168},
zbl = {0659.35038},
mrnumber = {91b:31015},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1168/}
}
TY - JOUR AU - Heinonen, Juha AU - Kilpeläinen, Terro AU - Martio, Olli TI - Fine topology and quasilinear elliptic equations JO - Annales de l'Institut Fourier PY - 1989 SP - 293 EP - 318 VL - 39 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1168/ DO - 10.5802/aif.1168 LA - en ID - AIF_1989__39_2_293_0 ER -
%0 Journal Article %A Heinonen, Juha %A Kilpeläinen, Terro %A Martio, Olli %T Fine topology and quasilinear elliptic equations %J Annales de l'Institut Fourier %D 1989 %P 293-318 %V 39 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1168/ %R 10.5802/aif.1168 %G en %F AIF_1989__39_2_293_0
Heinonen, Juha; Kilpeläinen, Terro; Martio, Olli. Fine topology and quasilinear elliptic equations. Annales de l'Institut Fourier, Tome 39 (1989) no. 2, pp. 293-318. doi: 10.5802/aif.1168
[AH] and , Inclusion relations among fine topologies in non-linear potential theory, Indiana Univ. Math. J., 33 (1984), 117-126. | Zbl | MR
[AL] and , Fine and quasi connectedness in nonlinear potential theory, Ann. Inst. Fourier, Grenoble, 35-1 (1985), 57-73. | Numdam | Zbl | MR | EuDML
[AM] and , Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J., 22 (1972), 169-197. | Zbl | MR
[B] , On topologies and boundaries in potential theory, Lecture Notes in Math., 175, Springer-Verlag, 1971. | Zbl | MR
[D] , Classical potential theory and its probabilistic counterpart, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. | Zbl | MR
[F1] , The quasi topology associated with a countable subadditive set function, Ann. Inst. Fourier, Grenoble, 21-1, (1971), 123-169. | Numdam | Zbl | EuDML
[F2] , Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier, Grenoble, 21-3 (1971), 227-244. | Numdam | Zbl | MR | EuDML
[F3] , Asymptotic paths for subharmonic functions and polygonal connectedness of fine domains, Séminaire de Théorie du Potentiel, Paris, n° 5, Lecture Notes in Math., 814, Springer-Verlag, 1980, pp. 97-116. | Zbl | MR
[F4] , Value distribution of harmonic and finely harmonic morphisms and applications in complex analysis, Ann. Acad. Sci. Fenn. Ser. A I Math., 11 (1986), 111-135. | Zbl | MR
[GLM1] , and , Conformally invariant variational integrals, Trans. Amer. Math. Soc., 277 (1983), 43-73. | Zbl | MR
[GLM2] , and , Note on the PWB-method in the non-linear case, Pacific J. Math., 125 (1986), 381-395. | Zbl | MR
[HW] and , Thin sets in nonlinear potential theory, Ann. Inst. Fourier, Grenoble, 33-4 (1983), 161-187. | Zbl | MR | Numdam
[HK1] and , A-superharmonic functions and supersolutions of degenerate elliptic equations, Ark. Mat., 26 (1988), 87-105. | Zbl | MR
[HK2] and , Polar sets for supersolutions of degenerate elliptic equations, Math. Scand. (to appear). | Zbl
[HK3] and , On the Wiener criterion and quasilinear obstacle problems, Trans. Amer. Math. Soc., 310 (1988), 239-255. | Zbl | MR
[K] , Potential theory for supersolutions of degenerate elliptic equations (to appear). | Zbl
[L] , On the definition and properties of p-superharmonic functions, J. Reine Angew. Math., 365 (1986), 67-79. | Zbl | MR
[LM] and , Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math., 155 (1985), 153-171. | Zbl | MR
[LSW] , and , Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (III), 17 (1963), 43-77. | Zbl | MR | Numdam
[LMZ] , and , Fine topology methods in real analysis and potential theory, Lecture Notes in Math., 1189, Springer-Verlag, 1986. | Zbl | MR
[MRV1] , and , Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 448 (1969), 1-40. | Zbl | MR
[MRV2] , and , Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 464 (1970), 1-13. | Zbl
[MS] and , Density conditions in the n-capacity, Indiana Univ. Math. J., 26 (1977), 761-776. | Zbl | MR
[MV] and , Elliptic equations and maps of bounded length distortion, Math. Ann., 282, (1988), 423-443. | Zbl | MR
[M] , Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. | Zbl | MR
[R] , The concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh., 10 (1969), 1109-1138. (Russian). | Zbl | MR
Cité par Sources :



