There are many similarities between elliptic curves and formal groups of finite height. The points of order of a generic formal group are studied in order to develop the formal group analogue (applied to points of order ) of the concept of level structure and that of the -pairing known in elliptic curve theory.
Il y a beaucoup d’analogues entre les courbes elliptiques et les groupes formels de hauteur finie. Dans cet article on utilise les groupes formels génériques de Lubin-Tate pour développer pour les points d’ordre sur un groupe formel, les idées de structure de niveau et l’accouplement déjà connus dans la théorie des courbes elliptiques.
@article{AIF_1988__38_4_17_0, author = {Zimmermann, Karl}, title = {Points of order $p$ of generic formal groups}, journal = {Annales de l'Institut Fourier}, pages = {17--32}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {4}, year = {1988}, doi = {10.5802/aif.1148}, zbl = {0644.14016}, mrnumber = {90a:14065}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1148/} }
TY - JOUR AU - Zimmermann, Karl TI - Points of order $p$ of generic formal groups JO - Annales de l'Institut Fourier PY - 1988 SP - 17 EP - 32 VL - 38 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1148/ DO - 10.5802/aif.1148 LA - en ID - AIF_1988__38_4_17_0 ER -
Zimmermann, Karl. Points of order $p$ of generic formal groups. Annales de l'Institut Fourier, Volume 38 (1988) no. 4, pp. 17-32. doi : 10.5802/aif.1148. https://aif.centre-mersenne.org/articles/10.5802/aif.1148/
[1] Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967. | MR | Zbl
,[2] Geometric Algebra, Interscience Publishers, New York, 1957. | MR | Zbl
,[3] Elliptic modules, Math. USSR Sbornik, Vol. 23, N° 4, (1974), 561-592. | MR | Zbl
,[4] Arithmetic Moduli of Eliptic Curves, Princeton University Press, New Jersey, 1985. | Zbl
and ,[5] Elliptic curves : Diophantine analysis, Springer Verlag 1978. | MR | Zbl
,[6] One parameter formal Lie groups over p-adic integer rings, Ann. of Math., 81 (1965), 380-387.
,[7] Formal complex multiplication in local fields, Ann. of Math., 81 (1965), 380-387. | MR | Zbl
and ,[8] Formal moduli for one parameter formal Lie group, Bull. Soc. Math. France, 94 (1966), 49-60. | Numdam | MR | Zbl
and ,[9] Canonical subgroups of formal groups, Trans. Amer. Math. Soc., 251 (1979), 103-127. | MR | Zbl
,[10] The local Kronecker-Weber Theorem, Trans. Amer. Math. Soc., 267 (1981), 133-138. | MR | Zbl
,[11] Local Rings, Interscience Publishers, New York, 1962. | MR | Zbl
,Cited by Sources: