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POINTS OF ORDER p
OF GENERIC FORMAL GROUPS

by Karl ZIMMERMANN

0. Introduction.

Let Fp be the field with p elements and let 0(x,y) e lFp[[x,y|] be a
one dimensional formal group of finite height h. The ring of p-adic
integers will be denoted Zp. In their paper, « Formal moduli for one
parameter formal Lie groups», Lubin and Tate [8] have classified
•-isomorphism classes of liftings of 0 to complete local Zp-algebras
(5,^). In particular, they show the existence of a generic formal group
r^,...,^_/^,.y)eZp[[ti, .. .,^-i]][[^,y|] °f height h which satisfies
^o,...,o0c?}0 x z ^p = ^)(x9y) and a universal property which says, in
effect, that *-isomorphism classes of liftings are determined by continuous
homomorphisms ^F : Zp[[ti, . . . ,^-i]] -> S , (each F^) , . . . , y (^ _^ is a
canonical representative of an equivalence class). Said two other ways,
the isomorphism classes are in one-to-one correspondence with the set
theoretic product of ^ with itself (A-l)-times, or, the formal spectrum
of Zp[[?i, . . . , th-i]] may be thought of as a parameter space for liftings.

There are many similarities between the theory of formal groups of
finite height and the theory of elliptic curves. If * h = 2, the one
parameter family of liftings given by F^ corresponds to the 7-line in
elliptic curve theory. Even more is known in the case of elliptic curves.
Let n > 2 be an integer and consider pairs (E,P) where P is a point

of order exactly n on the elliptic curve E. For rings R containing -
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18 KARL ZIMMERMANN

there is associated to this situation a project! ve curve /i(n) defined over
Z which is almost a moduli space. It almost represents the functor

R \—> ^-isomorphism classes of pairs {E,P)

where E is defined over R and P e E(K) has order n. Moreover, there
is another curve, ^(n) which almost parametrizes triples, (E,P,Q) where
E is an elliptic curve and P and Q are points on E that form a Z/nZ-
basis for the n-torsion points of E. It is the aim of this paper to study
the formal group analogue (applied to points of order p on formal
groups) of this concept of level structure known in elliptic curve theory.
This will involve studying the points of order p of Y^, . . . ,^ _ i m an
algebraic closure of Zp[[ri, . . . ,4-1]]. Using these results, we then define
the formal group analogue of the ^-pairing for elliptic curves. In our
case, it will be an Fp-multilinear map on the finite group scheme
(ker [p]r^ ^ Y (set theoretic product) with values in the finite
groupscheme ker \p}p where F is a multiplicative formal group.

The material in this paper is a new example of work done earlier
in a more abstract setting. To see the general framework, the reader
might wish to consult the book of Katz and Mazur, Arithmetic Moduli
of Elliptic Curves [4]. Also of interest is the paper of DrindfeFd [3] in
which he introduces the theory of elliptic modules. These are but two
of the excellent sources available.

Before beginning, I would like to express my gratitude to B. Gross,
M. Rosen, and especially Jonathan Lubin for sharing their insights and
suggestions with me during the writing of my dissertation (of which
this paper is a part).

1. The polynomials.

The main object of study in this paper is a generic formal group
I\,.. . ,^_^(x, y)eZp[[?i, . . .,4-1]] of finite height h ^ 2. As mentioned
in the introduction this is a generic lifting introduced by Lubin and
Tate in their paper «Formal moduli for one parameter formal Lie
groups»[8]. The reader should consult this paper for all pertinent
definitions, and constructions. A briefer, summary of the properties of
^i • • • • ^ - r can ^e f01111^ in Lubin [9].
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Key to our purposes is the fact that for a generic formal group
defined over Zp[[t^ . . . ,r^-i]] the endomorphism, multiplication by p,
can be written

h-l

^ ' - , , . , 0 0 = PXg»(x) + ^ t^g^x) + x^g^x)
i= 1

where g,(x) e Z^[[x]]*, g,(x) 6 Z^, . . . , rjM*, f = 1, . . . , h - 1, and
gh e Zp[[^i, . . . ,^-i]][M]* . As this notation is somewhat cumbersome,
we will let Zp[[ti, . . . , t^_i]] = A, and when refering to a generic formal
group we will drop the subscripts altogether. Thus, we write
r(x, y) e A[[x,y]] for a generic formal group of height h ^ 2 (/i, although
arbitrary, will be fixed throughout the paper) and refer to multiplication-
by n on the formal group as [n](x) € A[[x]\.

Now, let K be the field of fractions of A and K an algebraic closure
of K. As in the study of formal groups over a local field we let

x
A ( ^ )= U {ae^l^Ka) = 0}, and refer to A (F) as the group of

m=l

torsion points of r. The group structure is defined as follows : for
a, P € A(T), a © P = F(a,P). This substitution makes sense because a
and P are non-units in ^4[a,P] which is finite as an ^-module, hence
complete. The formal group endomorphism [p](x) induces a group
endomorphism [ p ] : A(r)^A(F), and it is clear that ker[p] is equal
to {a e K : [p](a) = 0}. The elements of the group ker[p] will be referred
to as the points of order p of r.

The ring A is a complete local ring and therefore, we may apply
the Weierstrass Preparation Theorem to the power series [ p ] ( x ) / x . We
write [p](x)/x = P(x)[i(x) where [i(x) e A[[x]]*, and P(x)eA[x] is monic
of degree ph - 1 (since the height of F is h). Note that P(x) satisfies
the Eisenstein criterion and is therefore irreducible. Furthermore,
ker[p] = {0] u {a€^|P(a) = 0} and so has p^ elements. It is in fact an
^-dimensional vector space over Fp.

P(x) is one of several polynomials important in the study of the
points of order p of F. Let yi e K satisfy P(yi) = 0 and define

P^Oc) =
xP(x)n^-^i))

< i = o



20 KARL ZIMMERMANN

Similarly, if j z ^ K satisfies Pyl{y2) = 0, define

^(^)pYl.Y2(^) = _

ft1 ^-M(Yi))©^:l(y2))
(•1./2-0

Continuing in this fashion, if P^1 ""^^(y/i-i) = 0, define

xP(x)p Y l , Y 2 > - - - . Y / i - l ( ^ = —————^————————————————__'———————————————————.

11 ^-[^(Yi))©--©^-i](y.-i))
i i , . . . , ^ _ i = o

Finally, let y/, e A" satisfy P71' ""^-^(y/i) = 0 and observe that {y i , . . . , y/J
is an Fp-basis for the vector space ker [p]. It is possible to shorten
notation at this point; let Vj be the vector subspace of ker [p] generated

xP(x}
by {Yi , . . . ,Y ,} . We have P ^ ' - - - ' ^ = ———-——.

n (x-a)
a e V,

We will show below that for each j = 1, . . . , h, the ring ^[yi, . . . , y;]
is a complete regular local ring and the polynomial P1 '••"^(x) is defined
and irreducible over this ring.

2. Certain discrete valuation rings.

The proof of irreducibility of the polynomials introduced in the
previous section will depend on the existence of certain rings € i 3 A
where each Oi is a complete discrete valuation ring. These rings will
be constructed via

PROPOSITION 2.1. — Let R be a complete discrete valuation ring mth

valuation function v . Let n be a uniformizer of R with v(n) = -^ re N .
Let s e N . The ring R[[x]] may be embedded in a complete discrete
valuation ring (9 whose valuation function extends the original function.

Moreover, the element x will be a uniformizer for ( 9 , v(x) = — •

Sketch of the proof. - If f(x) = £^ e R[[x]] define

i;(/(x))=Inffi;(a,)+-^y
\ rs/
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Let

01 = }g^) :f(x) ' g(x) E R[[x}]' ̂ (x) ^ ° and u(/(x)) ^ l^oc))}•

6^ is a discrete valuation ring and may be completed to get the desired
ring ( 9 .

For our purposes, several applications of the proposition will be
used to embed A into a ring ^ satisfying :

v(t,) = 1/p

"M-T^T -<^.
v(tj) = v(t,), j > i .

3. Newton polygons.

We will be able to study the polynomials introduced in section 1 as
polynomials defined over complete discrete valuation rings. In particular,
we will study their Newton polygons and so a quick review of these
polygons is in order.

Let 0 be a ring that is complete with respect to a discrete valuation v .
Let F be the field of fractions of (9 and F an algebraic closure of F .
The unique extension of v to F will still be referred to as v. If

n

f(z) = ^ diZ1 e F[z\, the Newton polygon of / is constructed by erecting
1 = 0

vertical half-lines on all points 0,u(^)) e IR x [R, and taking the convex
hull of the union of these lines. The boundary of this polygon, e^(/),
has the following property : if J^C/) has a segment of width w (length
of the projection onto the axis of abscissas) and slope n, then in F,
there are, counting multiplicity, co roots p of / with v(p) = - [i.
Moreover, a vertex of ^p(f) will indicate a factorization of / over F .
To see some details, and for further information about Newton polygons
the reader should see Artin [1]. A more complete list of properties may
be found in Lubin [10].

We conclude this section with the statement of a lemma that will
greatly facilitate the use of the Newton polygon in our situation. The
proof is just an interpretation of the conditions in the hypothesis.
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LEMMA 3.1. — Let (9 be a complete discrete valuation ring,
00

f(x) = ^ a^ e 0[[x]]. Let P{x)\ji(x) = f(x) ^here P(x)e0[x] and
j - o

H(x)e^[[x]]* arise from the Weierstrass Preparation Theorem.

If f(x) satisfies aj = 0 for

j < n^v(a^ > v(a^ > > v(a^_) > v(a^) = 0

and \vhen n,< / < n^i, v(an) < v(a^) then

^(P(x))=^(]>,A
\7=0 /

nh

It should be remarked that the monic polynomial P(x) and ^ a^
7=0

are not likely equal. The lemma says they have the same Newton
polygon.

DEFINITION 3.1. — In the situation of the above lemma, the points
(a^.,v(an)) e R x (R wfM be called the critical points of ̂ (/).

Critical points need not be vertices of ^^(f) although in our
application of the lemma to [p](x)/x and P(x) they mil be.

4. The regularity of the rings.

In this section, we take a close look at the rings A and A[y^, . . . ,yj,
j = 1, 2, . . . , h, where yi , . . . , y/, are as defined in section 1. The first
observation is that A is a complete, regular local ring of dimension h
with maximal ideal Mo = ( p , ^ i , . . .,^-1). Our goal is to prove.

THEOREM 4.1. - Let Y i , . . . , jh be chosen as above. For 1 ̂  k ^ h,
^[Yi, . . . ,7k] is a complete regular local ring of dimension h mth maximal
ideal M^ = (Yi, . . . , y*, ̂ , . . . , ̂ -i).

Note. — The fact that A[y^] is regular and local of dimension h
with maximal ideal Mi = (71, ^i, . . . , t^-i) follows from a general theorem
about roots of Eisenstein polynomials over regular local rings (as well
as from our proof below). The fact that A is complete then implies
^[Yi] is complete.
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Proof. — We may start by assuming that for j ^ i it has been
shown that the ring ^[yi, .. .,Yj] is a complete regular local ring with
maximal ideal M, = (yi, . . . , jj, tj, . . . , t^-1). Observe that since
^[Yi» • • • »Ti] ls complete, terms of the form [ni](yi) © • • • © Dij(Yi) are
in it. We recall that V, denotes the subspace of ker[p] generated by
Y i , . . . , Y i and let gi(x) = Y\ (x—z). The remark above indicates

O ^ z e V^

that gi(x) e^[yi, .. .,yJ[x]. Moreover, since P(x) = ^(x)P71' '^(x)
and P(x)e^[x] it follows that P^ ••••^(x) e ^[yi, . . . ,yj[x]. We will
now show that P71' • • • • Y l is irreducible over ^ [ y i , . . . , y j which will in
turn give information about the ring in question, ^4[yi, . . . ,y ,+ i ] .

U'/p(p2 - p + 1))

(p3 - \Mp{p2 - p + l)(p3 - p2 + l))

- ( p i ' l - U / p ( p 2 - p + l)...^-1-?1-^ l))

[(p1 - l,l/p(p2 - p + 1)... (p1 - p'~1 + l))

(^ - 1,0)

Fig. 1.
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Embed the ring A in the complete discrete valuation ring (9^ described
in section 2. Observe that [p](x)/x and P(x) satisfy the criteria of
lemma 3.1 with critical points (0,1), (;?—l,y(ti)), . . . , (p1— l,i?(^)), and
(p^—1,0) . Thus, we may graph ^c(P) where P is considered a
polynomial with coefficients in 6^. (A quick computation, (check the
slopes), will show that each critical point is a vertex.) See figure 1.

The breaks in ^^.(P) indicate that P(x) factors over ^[x] as
P(x) = 5i(x)52<x), . . . , 5,(x)5,+i(x). Let Pi, Pz, . . . , P, be roots of
5i(x), . . . , Si(x) respectively. Each root ^ of Sj(x) satisfies v(C,j) = v(^j)
and if 71 < j a » v(^j^ > v ( ^ j ^ ' Notice also that all roots of s,+i(x)
have value less than the roots of 5i(x), . . . ,5 , (x) . A computation
shows that S j ( x ) == H(x- [h](Pi) © • • • ® [ij] (Pj)) where
i'i, . . . , ij; = 0, 1, . . . , p — 1 and fj; = 1, 2, . . . , p — 1. It therefore
must be the case that 5,+i(x) = P^' • • • •^(x) .

The valuation on ^, may be extended to ^, and then restricted
to ^[pi, . . . ,? , ] . Note that if pe 6?[pi, . . . , Pj then
r(P) ^ i;(P,) = v(P^ ••• '^(0)). However, all coefficients of P^' '^(x),
except that of x^"^1, lie in a maximal ideal of ^[Pi, .. . ,PJ and thus
/?pl ^(x) satisfies an Eisenstein criterion over that ring and therefore
is irreducible. Note that since ^4[Pi, . . . , P,] c ^[Pi, .. • , Pi] we see that
ppi, ,p^ ^ irreducible over ^ [Pi, . . . , PJ. Because there is an
isomorphism ^4[Pi, . . . , PJ -^ ^[yi,. . . ,7,] we finally conclude P71' ""Y(

is irreducible over ^[yi, . . . ,yj .

Since P71'" ^^(Yi+i) = 0 and ^ 4 [ Y i , . . . , Y i ] is a unique factorization
domain, we have that

^[Yi, .. .,Y^i] ^ A[y^ .. .,YJM/(^1- >Y^))

whence it is complete and local. All that remains to show is regularity.
Clearly Mi+i = (Yi» • • • .Yi+i^^ • • • ^/i-i) ^d i1 m^ be shown that i,
can be written in terms of yi , . . . , y ,+i , ^-+1, . . . , th-\- To this end,
we argue as in the beginning of the proof that
p ' \ ' • • • ^ i - i ( x ) e.4[yi, .. . ,Y i+ i ] . In particular, since

P(x) = P^ ••••^i(x)^,(x), (g^,(x) = ]~[ ^-^\
\ O^ze V(+i /

we deduce that the first p^1 — 2 coefficients of P are in the ideal of
^[Yi? • • • » Y t + i ] generated by YI ? • • • • » Yi+r Now, we will use the fact
that P(x)[i(x) = [ p ] ( x ) / x and compare coefficients of x^1"1.
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Recall that,

P(x)H(x)=^oM+^~W^)+ • • • +r^-^,(x)+ • . • +x^(x).

Let the coefficient of x^"1 on the left hand side of the above
equation be c. By remarks above, c €(yi , . . . ,y;-n). We have

i-l

t,u=c-pbo- ̂  bntn where ^eZp[[ri, . . .,^-1]] and ueZ^ . Forj^f-1
n = l

we may assume tje (yi, . . . ,yy+i) in ^[71, . . . ,Yj+i] and therefore
^•e(yi, .. .,y^i) in A[y^ . . . ,y ,+i] . It follows that ^-e (yi, . . . ,y ,+i) in
^[Yi, .. . ,y,+i]andsoM^i = (yi, . . . , y ,+ i , r^i, . . . ,^-i). This completes
the proof.

Q.E.D.

The rings of the above theorem, ^ 4 [ y i , . . . , y j , give us the formal
group analogue of level structure as mentioned in the introduction. In
particular, let (S)(x,y)e^p[[x,y]] be a formal group of finite height h
and let p be the set of all pairs (F,P) where F is a formal group
defined over a complete, local Zp-algebra (S,^T) satisfying F x s S / ^ 4 ' = = <I>
with P a point of F of order p . Define an equivalence relation on p
as follows : (F,P) ^ (G,Q) if and only if there is a ^isomorphism
/: F -> G with f(P) = Q. Note that if a ^-isomorphism exists, it will
be unique.

Now, note that a continuous homomorphism

^ : A[y,] ^ A[x]/(P(x)) ^ A[[x]]/(([p](x)-x) -^ S

is determined by the images of ^ i , . . . , ^ - i and x in 5. Thus, the
formal spectrum of A[y^] may be thought of as a parameter space for
p / ^ with each equivalence class having a unique representative of the
form (r^p,,.,^_p.\|/(x)). The rings A[y,, . . . ,y j , j = 2 , . . . , h will
play similar roles. Moreover, the fact that the rings are regular indicates
that we have smooth families

W4[Yi, . . -,yJ) -^ V(-4[Yi, .. .,Y.-i]) -^ • • • ^ S,f(A).

It would be nice to know a bit about the rings ^4[yi, . . . ,yj. It
has been conjectured, for example, that in the case h = 2, p = 2,
^[Yi»Y2] ^ Z2[[^9c]]/(^'~2,a+b+c) because of the action of S^ on
the latter group. I have been unable to show this.
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5. The Galois group of K(keTlp])fK.

Let K denote the field of fractions of the ring A. We may deduce
a great deal about the extension of fields K(ker[p])/K from our previous
work. The results of this section will then allow us to define the
multilinear map referred to in the introduction.

PROPOSITION 5.1. - Let 7 i , . . . , y / , be chosen as before. Then
K(ket[p\) = K(y^ . . . ,7/1). Moreover, K(y^, . . . ,y/,) is a Galois extension
ofK of degree (p'-W-p) . . . (p'-p71-1).

Proof. - First observe that for j = 1, 2, . . . , h, A(yi, . . . , y^) is
the field of fractions of the unique factorization domain ^[y i , . . . ,y j
and so p^' ••• '^ '(x) is irreducible * o ver A"(yi, .. .,y^)[x]. Similarly P(x) is
irreducible over K[x]. To get the final assertion, consider the tower of
fields, K ^ K ( ^ ) ^ . . . ^^(yi , . . . ,y , ) .

Now observe that ^ [y i , . . . ,y / i ] is complete and therefore contains
ker[p]. It follows that A:(ker[p]) = K(y^ ... ,y^). Finally note that
A ( Y i , . . . , y ^ ) is a Galois extension of K since it is the splitting field
of P(x) over A'.

Q.E.D.

Let G denote the Galois group of K(keT[p}) over K (or A(yi, . . . ,y/i)
over K). There is an injection of groups, G c—^ GL^p) which arises

h

by associating to each a e (7, the matrix (fly) where a(y,) = ^ [^]y;.
j'=i

Since the order of GL^p) is precisely (^- l)^-?) . . . O^-^"1) this
injection is actually an isomorphism.

Our attention now shifts to the fixed field, L, of SL^p) in
^(Vi. • • • ? Y / i ) - Several properties of L are immediate due to properties
of SL^p) and the Galois correspondence. In particular, L is a cyclic
extension of K of degree p - 1. It will be shown that L is the field
of fractions of Zp[7i][[ri, . . . , r^_ i ] ] where n is integral overZp.

It is necessary to do some preliminary work before proving the
above claim. To that end, let V be an arbitrary vector space of
dimensionh over Fp. Projective (h- l)-space over (Fp, ^h~l(^p) may be
thought of as the dimension one subspaces of V. Let 5' ^ V be a



POINTS OF ORDER p OF GENERIC FORMAL GROUPS 27

complete set of representatives for P^'^Fp). Such a set is characterized
by two properties:

i) 5' contains ph - 1 / p - 1 elements (exactly one for each point of
P'"TO.

ii) Any two distinct elements of S are linearly independent.

In the case at hand, that is V = ker[p], we have the following,

Example 5.1. — Let yi , . . . , y/i be as chosen before. Consider

A = {Yi} u {[i\](yi) © 72} u . . . u {[ f i ] (Yi)®. . . ©[^-i](y^-i)®Y,}

where ^ = 0, 1, . . . , p — 1. Clearly the elements of /i are pairwise
linearly independent and there are ph — 1 / p — 1 of them. Thus / is a
complete set of representatives for P^'^Fp) in ker{p].

Note that ker[p] ^ A" and so, given a, peker[p] we can multiply
them in K , (actually in A^(yi, . . . ,y/i)).

DEFINITION. - Let r = p h - l / p - l . XeK is a ^-mult if
r

X = Y\ Sj where {5i, . . . ,5^} & kerip) 15 a complete set of representatives

for P'-^Fp).

To study P-mults in K\ (clearly they exist) we will use « Lubin's
Lemma » (see [6], [5]) essentially as it appeared in his thesis.

LEMMA (Lubin). — Let n be an integer which is" not divisible by p
and let co be an n^ root of unity with we R (a commutative ring with
identity). Let f(T)eR[[T\] be such that fn(T)=T. Suppose
f(T) = coTmoddeg2. Then there exists u(T)eR[[T]] such that
u-^T^eR^T]] andf^T) = ufu~\T) = cor.

The Lemma will be used as follows. Note that the (p-1)^ roots of
unity are contained in Tp £ A. Let T| be a primitive (p—1)^ root of
unity in Zp and observe that {l,r|,\ . ..r^"2} form a complete set of
multiplicative representatives for (Zp/pZp)* in Zp. Thus, for every
aeker[p], we see that [r|](a) = [j] (a) for some j = 1,2, . . . ,p — 1.
It is clear that [r}](x) = r\ mod degree 2, and [r{Y~\x) ^ x . There
exists, according to the lemma, u(x) e A\[x}} satisfying
[r|]"(x) = u[r\]u~l(x) = r\x. Reparametrize F(x,y) via u, that is, let
r"(x,^) = u(^(u~l(x),u~l(y)). If aeker[p]r then u(a) eker[/?]r". Since



28 KARL ZIMMERMANN

A^Yi, . . . ,y/i) = ^(M(yi), . . . ,M(y/,)) we may assume without any loss of
generality that F ( x , y ) satisfies [r|]r(x) = T|X. Letting co^ be the (p—1)^
root of unity in J-p satisfying co^ = k mod p we have, for each a e ker[p],
[fe](a) = co^a. We can now prove

LEMMA 5.1. — There are exactly p — 1 P-mults in K .

Proof. — Consider the set /i of example 5.1. To simplify notation,
let the elements of /i be represented by 5i, . . . , Sr where r = ph — 1 / p — 1.
Let I] = {\j](Sk): Sk e /i} and observe that for j = 1, 2 , . . . , p - 1,
Ij ^ ker[p] is a complete set of representatives for P^^Fp). Now
consider the following array which lists all non-zero elements of ker[p]:

T • o n o

L : [2](50 [2](^) ... [2] (5,)

^'-l : [P-l](5i) [P-l]^) . . . [P-1](S.)

If X is an arbitrary P-mult then it is the product of r-elements
and clearly no two can come from the same column. Therefore,

r

X=\\ [ji](Si), ji; = 1, . . . , p — 1. However, in light of the discussion
1 = 1

r

preceeding this lemma, X = Y [ w ^ ' S i where • denotes multiplication in
1=1

K . Hence X = co^ f] s; for some f e = l , . . . , p - l . Since there are
1=1

p — 1 such co/fc, there are at most p — 1 P-mults. Finally, to see that
r

there are exactly p — 1 P-mults let Xj = [/]5i ]~[ 5,.
Q.E.D.

r

We will set notation as follows: let A(yi, . . . ,y^) = ]~[ s, be the
(=1

P-mult associated to /i and for j = 2, . . . , p - 1, A^(yi, . . . ,y/i) be the
h

P-mult associated to Ij ; i.e. A^(yi, . . . ,y/i) = n [/K^).
1=1

There is a direct relationship between the P-mults and the polynomial
P(x). In particular,

P(O) = n ^ ̂ yi. • • • ̂ ) n ̂ (Yi-. • • ̂ )-
O^zekerU?] 7=2
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Since each A , (y i , . . . , y^) = o) .̂ A ( y i , . . . , y^) we have
P(0) = o),A(yi, . . . ,y^-1 for some ^ = 1, 2, . . . , p - 1.

Once again we call upon the fact that [ p ] ( x ) / ( x ) = P(x)^(x) and
comparing the coefficients of the constant term we have
P^o(O) = (o,A(yi, . . . , 7^-^(0) where go(0)eZf and ^i(0)6^*. Thus
p = A(yi, ....Y^"1^!, ...,4-ir1) where ^(ti, . . . ,4-i)-1 e.4* . Let
/(x)= x ^ - 1 - A ( Y i , . . . , Y ^ ~ 1 =^~ 1 -^ i , . . . ,4- i )P. This polyno-
mial has as roots, co^A(Yi, . . . , Y A ) » ^ = 1» 2, . . . , p — 1, that is, the
roots of/(x) are exactly the P-mults. Moreover, since g{t^ .. .,4-1) is
a unit in A, /(x) is irreductible over A by the Eisenstein criterion. We
can now prove.

THEOREM 5.1. - The fixed field of Sl^p) in ^(Yi, . . . ,Y/i) is
L = ^ ( A ( Y i , . . . , y , ) ) .

Proof. - Clearly, K ^ 7C(A(yi, . . . . y,)) ^ K(j,, . . . , y,) and referring
to the discussion preceeding the theorem, we see that

[^(A(yi, . . . ,y,)): K\= p - 1.

If p + 2, SLh(fp) is the commutator subgroup of GL^p) (see for
example [2]). If o, T e=Gal(A:(yi, . . . ,y^)/A:) then

aTa~ lT- l(A(yl,...,y„)) = A(yi, . . . ,y^)

since a(A(yi, . . . , y^)) = (o^(A(yi, . . . . y^)) for some f e = l , 2 , . . . , ; ? - ! .
Hence the commutators of G are contained in
Gal(^(yi, . . . ,y^)/^(A(Yi, . . . ,y/,)). A comparison of dimensions gives
the desired result. Finally, when p = 2, A(yi, . . . ,y^) = P(0) eA:.

Q.E.D.

THEOREM_ 5.2. — L is a constant field extension. In particular, there
exists neQp such that L == ^(A(yi, . . . ,y/»)) = ^(7i) \vhere n e <Qp
generates a totally ramified extension of Qp.

Proof. - We have seen that L is the splitting field of
f(x) = x1'-1 - pg(t^ . . . , th-1) where g(t,, . . . , 4-1) e A *. We may write
^(ti, ...,4-1) = ao + r(ti, . . . ,^- i ) where ^el? and r(0, . . . ,0 ) = 0.
Thus we have f(x) = x^"1 - a o p s ( t ^ , . . . ,4-1) and 5(^1, . . . ,4-1) = 1
mod deg 2. Arguing modulo degree n one constructs q(t^, . . . , 4-1) e ̂ *
with 5(ti, ...,4-1) = ^(^i, ...^^-ly"1. Let n be a (p-1)5' root of a^p.
Then /(<?((i, . . . . 4- i)7c) = 0 whence L = K{q(t^ . . . . 4- i)7r) = TO. To



30 KARL ZIMMERMANN

complete the proof, note that n satisfies an Eisenstein polynomial with
coefficients in Zp.

Q.E.D.

The following is a corollary of the proof and will be used in the
next section. It says, in effect, that A(yi, . . . , y ^ ) is almost an element
ofZjTT].

COROLLARY. - There exists v(t^, . . . , t^-1) e A* satisfying
v(t,, . . . , ^ - O A ( y i , . . . , y ^ = 7i.

Proof. - This follows easily from the fact that

A(Yi,...,y,;r1 =OT^,...,t,-jy-1.
Q.E.D.

6. The multilinear map.

The object at this point is to construct a non-degenerate, alternating
multilinear map on the finite groupscheme ker [p] x • • • x ker [p]
(/z-times) with values in a finite groupscheme ker[p]^, where F is a
height 1 formal group.

To begin, consider the set D of power series in A[[x^ . . . , xj]
defined below,

2)={xJu{[fJ(xi)©(x2)}u • • • u{[^](x0e • • • ® [^-i](x,-i) ® x^}

where i\ = 0, 1, . . . , p - 1 and © denotes + r.

DEFINITION 6.1.

A(xi, . . . ,x^) = i;(ri,...,r,_i) n deA [ [ x , , . . . , x , ] ] .
de D

Observe that the result of substituting 7 i , . . . , y ^ for X i , . . . , x ^ fs
A(Yi, . . . ,y/i) = K . We will show that A is the multilinear map we seek.

THEOREM 6.1. - Let do e Zp be as defined in Theorem 5.2. A defines
a function whose domain is ker [p] x . . . x ker [p] (h-times) and whose
image is ker [p]? where F is the Lubin-Tate formal group associated to
— OopX + X^.
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Proof. — As usual, we consider the basis { y i , . . .,7/1} for the vector
space ker[p]. Identify (keT[p])h with M^(Fp) in the following manner

/(v,)\
(ui,...,v^ : where if v, = a^y, + ... 4- a^n, (^) lists the

\W
coordinates of u, .

Let ()): Fp -)• Zp be the function ())(/') = o), if co, =7 mod p and
( ( ) ( Q ) = = 0 = o ) o . Thus the image of (() is {0} u {(p — 1)^ roots of

/^)\
unity} £ J.p. We will show that A (1:1, ... ,v^ = (j> det : j TC.

\w
'Observe that ker [p]y = {<|)(./')7t: 7 6 Fp}.

/^)\

Cas^ i : (ui, . . . , Vh) <-» • ) = M and det M = 0.
\w

In this case, the coordinate vectors (Ui), . . . , (v^) are linearly dependent.
However this is true if and only if v^ . . . , i^ e ker [p] are linearly
dependent. The result follows.

Case ii : (i;i, . . . , i^) <-^ M e SL^p).

Here we observe that M ^-> a e Gal (^(yi, . . . , y/,)/^(A(yi, . . . , y/;))

A(i;i, .. .,^) = A(a(yi), . . . ,CT(y^) )
= a(A(yi, . . . ,y^)) = A(yi, . . . , y^ ) = TT.

Cfl5^ i'»' ; (yi, . . . , v^ ^-> M, det At = j e Fp.

Since any two matrices of determinant j differ by an element of
SL^Fp), the image of (1:1,...,^) is that of (L/](yi), . . . ,y,J. Indeed
letting Mi be the matrix associated to (|j](ji), . . . ,y/i), M = M^M^ with
M^eSL^p). Let 0,01,02 be the elements of G corresponding to
M, Mi, Ms.

A(i;i, . . . ,Vh) = A(o(yi), . . . ,o(y^)) = o(A(yi, . . . ,y/,))
= Oi02(A(yi, . . . , y^)) = Oi(A(Yi, . . . , Y^)

=A([ / ] (Yi) , . . . ,Y. ) .

An easy but tedious computation shows A(|j](Yi), . . .,y/i) = o^.
Q.E.D.
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THEOREM 6.2. — A is a multilinear, alternating, non-degenerate map
on the finite groupscheme (ker [p])71 with values in ker [p]? where G is the
Lubin-Tate formal group associated to — OoX + xp.

Proof. - First observe that if + denotes the addition in the
Fp-vector space ker[p]^, we have co^ 4- co^r = CO^TT. The proof then
follows from Theorem 6.1 and properties of the determinant.

Q.E.D.
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