Points of order p of generic formal groups
Annales de l'Institut Fourier, Tome 38 (1988) no. 4, pp. 17-32.

Il y a beaucoup d’analogues entre les courbes elliptiques et les groupes formels de hauteur finie. Dans cet article on utilise les groupes formels génériques de Lubin-Tate pour développer pour les points d’ordre p sur un groupe formel, les idées de structure de niveau et l’accouplement e n déjà connus dans la théorie des courbes elliptiques.

There are many similarities between elliptic curves and formal groups of finite height. The points of order p of a generic formal group are studied in order to develop the formal group analogue (applied to points of order p) of the concept of level structure and that of the e n -pairing known in elliptic curve theory.

@article{AIF_1988__38_4_17_0,
     author = {Zimmermann, Karl},
     title = {Points of order $p$ of generic formal groups},
     journal = {Annales de l'Institut Fourier},
     pages = {17--32},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {38},
     number = {4},
     year = {1988},
     doi = {10.5802/aif.1148},
     zbl = {0644.14016},
     mrnumber = {90a:14065},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1148/}
}
TY  - JOUR
AU  - Zimmermann, Karl
TI  - Points of order $p$ of generic formal groups
JO  - Annales de l'Institut Fourier
PY  - 1988
SP  - 17
EP  - 32
VL  - 38
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1148/
DO  - 10.5802/aif.1148
LA  - en
ID  - AIF_1988__38_4_17_0
ER  - 
%0 Journal Article
%A Zimmermann, Karl
%T Points of order $p$ of generic formal groups
%J Annales de l'Institut Fourier
%D 1988
%P 17-32
%V 38
%N 4
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1148/
%R 10.5802/aif.1148
%G en
%F AIF_1988__38_4_17_0
Zimmermann, Karl. Points of order $p$ of generic formal groups. Annales de l'Institut Fourier, Tome 38 (1988) no. 4, pp. 17-32. doi : 10.5802/aif.1148. https://aif.centre-mersenne.org/articles/10.5802/aif.1148/

[1] E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967. | MR | Zbl

[2] E. Artin, Geometric Algebra, Interscience Publishers, New York, 1957. | MR | Zbl

[3] V. G. Drinfel'D, Elliptic modules, Math. USSR Sbornik, Vol. 23, N° 4, (1974), 561-592. | MR | Zbl

[4] N. Katz and B. Mazur, Arithmetic Moduli of Eliptic Curves, Princeton University Press, New Jersey, 1985. | Zbl

[5] S. Lang, Elliptic curves : Diophantine analysis, Springer Verlag 1978. | MR | Zbl

[6] J. Lubin, One parameter formal Lie groups over p-adic integer rings, Ann. of Math., 81 (1965), 380-387.

[7] J. Lubin and J. Tate, Formal complex multiplication in local fields, Ann. of Math., 81 (1965), 380-387. | MR | Zbl

[8] J. Lubin and J. Tate, Formal moduli for one parameter formal Lie group, Bull. Soc. Math. France, 94 (1966), 49-60. | Numdam | MR | Zbl

[9] J. Lubin, Canonical subgroups of formal groups, Trans. Amer. Math. Soc., 251 (1979), 103-127. | MR | Zbl

[10] J. Lubin, The local Kronecker-Weber Theorem, Trans. Amer. Math. Soc., 267 (1981), 133-138. | MR | Zbl

[11] M. Nagata, Local Rings, Interscience Publishers, New York, 1962. | MR | Zbl

Cité par Sources :