Quelques propriétés sont démontrées de la “portée” sur une feuille ouverte d’un feuilletage arbitraire de co-dimension 1; celles-ci diffèrent des propriétés connues de la distance de feuilles. Elles comprennent que la feuille est d’un type fibré sur une variété riemannienne complète avec marge, ainsi que l’existence d’un champ vectoriel sur . Si est parallèle, est difféomorphe de et d’une courbure non-positive.
Some properties of the range on an open leaf of some codimension-one foliation are shown. They are different from the known properties of the distance of leaves. They imply that leaf is of fibred type over a complete Riemannian manifold with boundary, as well that there exists some vector field on . If is parallel then is diffeomorphic to and has non-positive curvature.
@article{AIF_1988__38_1_169_0, author = {Bugajska, Krystyna}, title = {Structure of a leaf of some codimension one riemannian foliation}, journal = {Annales de l'Institut Fourier}, pages = {169--174}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {1}, year = {1988}, doi = {10.5802/aif.1128}, zbl = {0652.53024}, mrnumber = {89f:53052}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1128/} }
TY - JOUR AU - Bugajska, Krystyna TI - Structure of a leaf of some codimension one riemannian foliation JO - Annales de l'Institut Fourier PY - 1988 SP - 169 EP - 174 VL - 38 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1128/ DO - 10.5802/aif.1128 LA - en ID - AIF_1988__38_1_169_0 ER -
%0 Journal Article %A Bugajska, Krystyna %T Structure of a leaf of some codimension one riemannian foliation %J Annales de l'Institut Fourier %D 1988 %P 169-174 %V 38 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1128/ %R 10.5802/aif.1128 %G en %F AIF_1988__38_1_169_0
Bugajska, Krystyna. Structure of a leaf of some codimension one riemannian foliation. Annales de l'Institut Fourier, Tome 38 (1988) no. 1, pp. 169-174. doi : 10.5802/aif.1128. https://aif.centre-mersenne.org/articles/10.5802/aif.1128/
[1] Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliation, Quart. J. Math. Oxford, (2) 35 (1984), 383-392. | MR | Zbl
, . —[2] On complete open manifolds of positive curvature, Ann. Math., 90 (1969), 75-90. | MR | Zbl
, . —[3] Totally geodesic foliations, J. Diff. Geom., 15 (1980), 225-235. | MR | Zbl
, . —[4] The structure of a Riemannian manifold admitting a parallel field of one dimensional tangent vector subspaces, Tohoku Math. J., 11 (1959), 119-132. | MR | Zbl
. —[5] Foundations of differential geometry, vol. I, Interscience, New York, 1967.
, . —[6] Foliated manifolds with bundle like metrics, Annals of Math., 69 (1959), 119-132. | MR | Zbl
. —[7] On the existence of complete parallel vector fields, Proc. Am. Math. Soc., 97 (1986), 311-314. | MR | Zbl
. —[8] Remarks on the group of isometries of a Riemannian manifold, Topology, 16 (1977), 239-247. | MR | Zbl
. —Cité par Sources :