We show that the maximal operator associated to the family of rectangles in one of whose sides is parallel to for some j,k is bounded on , . We give an application of this theorem to obtain an extension of the Marcinkiewicz multiplier theorem.
Nous montrons que l’opérateur maximal associé à la famille de rectangles en dont un des côtés est parallèle à pour quelques est borné sur , . Nous appliquons ce théorème pour obtenir une extension du théorème de multiplicateurs de Marcinkiewicz.
@article{AIF_1988__38_1_157_0,
author = {Carbery, Anthony},
title = {Differentiation in lacunary directions and an extension of the {Marcinkiewicz} multiplier theorem},
journal = {Annales de l'Institut Fourier},
pages = {157--168},
year = {1988},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {38},
number = {1},
doi = {10.5802/aif.1127},
zbl = {0607.42009},
mrnumber = {89h:42026},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1127/}
}
TY - JOUR AU - Carbery, Anthony TI - Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem JO - Annales de l'Institut Fourier PY - 1988 SP - 157 EP - 168 VL - 38 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1127/ DO - 10.5802/aif.1127 LA - en ID - AIF_1988__38_1_157_0 ER -
%0 Journal Article %A Carbery, Anthony %T Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem %J Annales de l'Institut Fourier %D 1988 %P 157-168 %V 38 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1127/ %R 10.5802/aif.1127 %G en %F AIF_1988__38_1_157_0
Carbery, Anthony. Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem. Annales de l'Institut Fourier, Volume 38 (1988) no. 1, pp. 157-168. doi: 10.5802/aif.1127
[1] . — An almost-orthogonality principle with applications to maximal functions associated to convex bodies, B.A.M.S., 14-2 (1986), 269-273. | Zbl | MR
[2] . — Variants of the Calderón-Zygmund theory for Lp-spaces, Revista Matemática Ibero Americana, 2-4 (1986), 381-396. | Zbl | MR
[3] . — Personal communication.
[4] , AND . Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations, Duke Math. J., 53-1 (1986), 189-209. | Zbl | MR
[5] , AND . — Differentiation in lacunary directions, P.N.A.S. (USA), 75-3 (1978), 1060-1062. | Zbl | MR
[6] . — Singular integrals and differentiability properties of functions, Princeton University Press, Princeton N.J., 1970. | Zbl | MR
Cited by Sources:



