[Propriété (T) topologique pour les groupoïdes]
Nous définissons une notion de propriété (T) pour les groupoïdes étales. Elle généralise à la fois la propriété (T) de Kazhdan pour les groupes, et la propriété (T) géométrique pour les espaces grossiers. Notre but principal est l’application de cette propriété (T) à l’existence de projecteurs de type Kazhdan dans les -algèbres réduites et maximales des groupoïdes, dont nous explorons les conséquences sur l’exactitude, l’exactitude en -théorie, et sur la validité de la conjecture de Baum–Connes. Nous étudions aussi divers exemples, et comparons cette notion à d’autres versions de la propriété (T) ainsi qu’à la a-T-moyennabilité.
We introduce a notion of topological Property (T) for étale groupoids. This simultaneously generalizes Kazhdan’s Property (T) for groups and geometric Property (T) for coarse spaces. One main goal is to use this Property (T) to prove the existence of so-called Kazhdan projections in both maximal and reduced groupoid -algebras, and explore applications of this to exactness, -exactness, and the Baum–Connes conjecture. We also study various examples, and discuss the relationship with other notions of Property (T) for groupoids and with a-T-menability.
Révisé le :
Accepté le :
Publié le :
Keywords: Property (T), Topological groupoids, Coarse geometry, Expander
Mot clés : Propriété (T), groupoïdes topologiques, géométrie grossière, expanseurs
Dell’Aiera, Clément 1 ; Willett, Rufus 2
@article{AIF_2022__72_3_1097_0, author = {Dell{\textquoteright}Aiera, Cl\'ement and Willett, Rufus}, title = {Topological {Property~(T)} for groupoids}, journal = {Annales de l'Institut Fourier}, pages = {1097--1148}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {3}, year = {2022}, doi = {10.5802/aif.3513}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3513/} }
TY - JOUR AU - Dell’Aiera, Clément AU - Willett, Rufus TI - Topological Property (T) for groupoids JO - Annales de l'Institut Fourier PY - 2022 SP - 1097 EP - 1148 VL - 72 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3513/ DO - 10.5802/aif.3513 LA - en ID - AIF_2022__72_3_1097_0 ER -
%0 Journal Article %A Dell’Aiera, Clément %A Willett, Rufus %T Topological Property (T) for groupoids %J Annales de l'Institut Fourier %D 2022 %P 1097-1148 %V 72 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3513/ %R 10.5802/aif.3513 %G en %F AIF_2022__72_3_1097_0
Dell’Aiera, Clément; Willett, Rufus. Topological Property (T) for groupoids. Annales de l'Institut Fourier, Tome 72 (2022) no. 3, pp. 1097-1148. doi : 10.5802/aif.3513. https://aif.centre-mersenne.org/articles/10.5802/aif.3513/
[1] Unbounded neagtive definite functions, Can. J. Math., Volume 33 (1981) no. 4, pp. 862-871 | DOI | Zbl
[2] Cohomology of property groupoids and applications, Ergodic Theory Dyn. Syst., Volume 25 (2005) no. 4, pp. 977-1013 | DOI | MR | Zbl
[3] Property (T) and rigidity for actions on Banach spaces, Acta Math., Volume 198 (2007) no. 1, pp. 57-105 | DOI | MR | Zbl
[4] Property (T) for -algebras, Bull. Lond. Math. Soc., Volume 38 (2006) no. 5, pp. 857-867 | DOI | MR | Zbl
[5] Kazhdan’s Property (T), Cambridge University Press, 2008 | DOI
[6] -Algebras and Finite-Dimensional Approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008
[7] -Algebras, North-Holland, 1977
[8] A Hilbert module approach to the Haagerup property, Integral Equations Oper. Theory, Volume 73 (2012), pp. 431-454 | DOI | MR | Zbl
[9] Kazhdan projections, random walks and ergodic theorems (2015) (to appear in J. Reine Angew. Math.) | arXiv
[10] The Baum-Connes conjecture, Proceedings of the International Congress of Mathematicians, Volume II (1998), pp. 637-646 | Zbl
[11] Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal., Volume 12 (2002), pp. 330-354 | DOI | MR | Zbl
[12] Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl., Volume 1 (1967), pp. 63-65 | DOI | MR | Zbl
[13] Un renforcement de la propriété (T), Duke Math. J., Volume 143 (2008) no. 3, pp. 559-602 | Zbl
[14] Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, 1994 | DOI
[15] A von Neumann algebra characterization of property (T) for groupoids (2017) (to appear in J. Aust. Math. Soc.) | arXiv
[16] A groupoid approach to -algebras, Lecture Notes in Mathematics, 793, Springer, 1980 | DOI | Numdam
[17] -algebras and dynamical systems (27 Colóquio Brasilieiro de Mathemática), Publicações Mathemáticas do IMPA, Instituto Nacional de Matemática Pura e Aplicada, 2009 | Zbl
[18] Lectures on Coarse Geometry, University Lecture Series, 31, American Mathematical Society, 2003
[19] Hausdorff étale groupoids and their -algebras (2017) | arXiv
[20] The coarse Baum-Connes conjecture and groupoids, Topology, Volume 41 (2002), pp. 807-834 | DOI | MR | Zbl
[21] A metric approach to limit operators, Trans. Am. Math. Soc., Volume 369 (2017), pp. 263-308 | DOI | MR | Zbl
[22] La conjecture de Baum-Connes pour les feuilletages moyennables, -Theory, Volume 17 (1999), pp. 215-264 | MR | Zbl
[23] Minimal projections, integrable representations and property (T), Arch. Math., Volume 43 (1984) no. 5, pp. 397-406 | DOI | MR | Zbl
[24] A non-amenable groupoid whose maximal and reduced -algebras are the same, Münster J. Math., Volume 8 (2015), pp. 241-252 | MR | Zbl
[25] Geometric Property (T), Chin. Ann. Math., Ser. B, Volume 35 (2014) no. 5, pp. 761-800 | DOI | MR | Zbl
[26] On the cohomology of ergodic actions of semisimple Lie groups and discrete subgroups, Am. J. Math., Volume 103 (1981) no. 5, pp. 937-951 | DOI | MR | Zbl
Cité par Sources :