Equivariant Schubert calculus and jeu de taquin
Annales de l'Institut Fourier, Volume 68 (2018) no. 1, p. 275-318
We introduce edge labeled Young tableaux. Our main results provide a corresponding analogue of Schützenberger’s theory of jeu de taquin. These are applied to the equivariant Schubert calculus of Grassmannians. Reinterpreting, we present new (semi)standard tableaux to study factorial Schur polynomials, after Biedenharn-Louck, Macdonald, Goulden-Greene, and others.Consequently, we obtain new combinatorial rules for the Schubert structure coefficients, complementing work of Molev-Sagan, Knutson-Tao, Molev, and Kreiman. We also describe a conjectural generalization of one of our rules to the equivariant K-theory of Grassmannians, extending our previous work on non-equivariant K-theory. This conjecture concretely realizes the “positivity” known to exist by a result of Anderson-Griffeth-Miller. It provides an alternative to the conjectural rule of Knutson-Vakil.
Nous introduisons le concept de tableaux de Young avec arêtes étiquetées. Nos résultats principaux décrivent un analogue à la théorie du jeu de taquin de Schützenberger, avec applications au calcul de Schubert équivariant des grassmanniennes. Nous présentons de nouveaux tableaux (semi-)standards pour étudier les polynômes de Schur factoriels, d’après Biedenharn-Louck, Macdonald, et Goulden-Greene, entre autres.Par conséquent, nous obtenons de nouvelles règles combinatoires pour les constantes de structure de Schubert, complémentaires aux travaux de Molev-Sagan, Knutson-Tao, Molev et Kreiman. Nous décrivons également une généralisation conjecturale d’une de nos règles à la K-théorie équivariante des grassmanniennes, étendant nos résultats précédents sur la K-théorie non équivariante. Cette conjecture réalise de façon concrète la positivité déjà connue par un résultat de Anderson-Griffeth-Miller, et offre une alternative à la règle conjecturale de Knutson-Vakil.
Received : 2012-10-12
Accepted : 2013-06-06
Published online : 2018-04-18
DOI : https://doi.org/10.5802/aif.3161
Classification:  05E10,  14N15,  05E05,  57R91
Keywords: Schubert calculus, equivariant cohomology, Grassmannians, jeu de taquin
@article{AIF_2018__68_1_275_0,
     author = {Thomas, Hugh and Yong, Alexander},
     title = {Equivariant Schubert calculus and jeu de taquin},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {1},
     year = {2018},
     pages = {275-318},
     doi = {10.5802/aif.3161},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_1_275_0}
}
Equivariant Schubert calculus and jeu de taquin. Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 275-318. doi : 10.5802/aif.3161. https://aif.centre-mersenne.org/item/AIF_2018__68_1_275_0/

[1] Anderson, Dave; Griffeth, Stephen; Miller, Ezra Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces, J. Eur. Math. Soc. (JEMS), Tome 13 (2011) no. 1, pp. 57-84 | Article | Zbl 1213.19003

[2] Biedenharn, Lawrence C.Jun.; Louck, James D. A new class of symmetric polynomials defined in terms of tableaux, Adv. Appl. Math., Tome 10 (1989) no. 4, pp. 396-438 | Article | Zbl 0698.05008

[3] Coskun, Izzet; Vakil, Ravi Geometric positivity in the cohomology of homogeneous spaces and generalized Schubert calculus, Algebraic Geometry (Seattle 2005, Pt. 1), American Mathematical Society, Providence RI (Proceedings of Symposia in Pure Mathematics) Tome 80 (2009), pp. 77-124 | Zbl 1184.14080

[4] Goulden, Ian; Greene, Curtis A new tableau representation for supersymmetric Schur functions, J. Algebra, Tome 170 (1994) no. 2, pp. 687-703 | Article | Zbl 0840.20008

[5] Graham, William Positivity in equivariant Schubert calculus, Duke Math. J., Tome 109 (2001) no. 3, pp. 599-614 | Article | Zbl 1069.14055

[6] Knutson, Allen Puzzles, positroid varieties, and equivariant K-theory of Grassmannians (2010) (https://arxiv.org/abs/1008.4302 )

[7] Knutson, Allen; Miller, Ezra; Yong, Alexander Gröbner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math., Tome 630 (2009), pp. 1-31 | Article | Zbl 1169.14033

[8] Knutson, Allen; Tao, Terence Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J., Tome 119 (2003) no. 2, pp. 221-260 | Article | Zbl 1064.14063

[9] Kreiman, Victor Equivariant Littlewood-Richardson skew tableaux, Trans. Am. Math. Soc., Tome 362 (2010) no. 5, pp. 2589-2617 | Article | Zbl 1205.05244

[10] Macdonald, Ian Grant Schur functions: theme and variations, Sémin. Lothar. Comb., Tome 28 (1992), pp. 5-39 | Zbl 0889.05073

[11] Manivel, Laurent Symmetric functions, Schubert polynomials and degeneracy loci, American Mathematical Society, Texts and Monographs, Tome 6 (2001), vii+167 pages | Zbl 0998.14023

[12] Molev, Alexander I. Littlewood-Richardson polynomials, J. Algebra, Tome 321 (2009) no. 11, pp. 3450-3468 | Article | Zbl 1169.05050

[13] Molev, Alexander I.; Sagan, Bruce E. A Littlewood-Richardson rule for factorial Schur functions, Trans. Am. Math. Soc., Tome 351 (1999) no. 11, pp. 4429-4443 | Article | Zbl 0972.05053

[14] Pechenik, Olivier; Yong, Alexander Equivariant K-theory of Grassmannians, Forum of Mathematics, Pi, Tome 5 (2017) (https://doi.org/10.1017/fmp.2017.4 ) | Article

[15] Schützenberger, Marcel-Paul La correspondance de Robinson, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Strasbourg, 1976), Springer (Lecture Notes in Math.) Tome 579 (1977), pp. 59-113 | Zbl 0398.05011

[16] Thomas, Hugh; Yong, Alexander A combinatorial rule for (co)minuscule Schubert calculus, Adv. Math., Tome 222 (2009) no. 2, pp. 596-620 | Article | Zbl 1208.14052

[17] Thomas, Hugh; Yong, Alexander A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus, Algebra Number Theory, Tome 3 (2009) no. 2, pp. 121-148 | Article | Zbl 1229.05285

[18] Woo, Alexander; Yong, Alexander A Gröbner basis for Kazhdan-Lusztig ideals, Am. J. Math., Tome 134 (2012) no. 4, pp. 1089-1137 | Article | Zbl 1262.13044

[19] Zinn-Justin, Paul Littlewood-Richardson coefficients and integrable tilings, Electron. J. Comb., Tome 16 (2009) no. 1 (Research Paper R12, 33 p.) | Zbl 1184.05133