An exotic group as limit of finite special linear groups
Annales de l'Institut Fourier, Volume 68 (2018) no. 1, p. 257-273
We consider the Polish group obtained as the rank-completion of an inductive limit of finite special linear groups. This Polish group is topologically simple modulo its center, it is extremely amenable and has no non-trivial strongly continuous unitary representation on a Hilbert space.
Nous étudions un groupe polonais obtenu comme complétion de la limite inductive de groupes linéaires spéciaux finis munis de la distance induite par le rang. Ce groupe polonais est topologiquement simple modulo son centre, extrêmement moyennable et n’a pas de représentations fortement continues non triviales sur un espace de Hilbert.
Received : 2016-07-04
Revised : 2017-02-03
Accepted : 2017-04-28
Published online : 2018-04-18
DOI : https://doi.org/10.5802/aif.3160
Classification:  54H11,  16E50,  43A07,  43A65
Keywords: Polish groups, von Neumann regular rings, extreme amenability and representation theory
@article{AIF_2018__68_1_257_0,
     author = {Carderi, Alessandro and Thom, Andreas},
     title = {An exotic group as limit of finite special linear groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {1},
     year = {2018},
     pages = {257-273},
     doi = {10.5802/aif.3160},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_1_257_0}
}
An exotic group as limit of finite special linear groups. Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 257-273. doi : 10.5802/aif.3160. https://aif.centre-mersenne.org/item/AIF_2018__68_1_257_0/

[1] Ando, Hiroshi; Matsuzawa, Yasumichi On Polish groups of finite type, Publ. Res. Inst. Math. Sci., Tome 48 (2012) no. 2, pp. 389-408 | Article | MR 2928146 | Zbl 1255.46028

[2] Ando, Hiroshi; Matsuzawa, Yasumichi; Thom, Andreas; Törnquist, Asger Unitarizability, Maurey–Nikishin factorization, and Polish groups of finite type (2016) (https://arxiv.org/abs/1605.06909v2, submitted for publication)

[3] Banaszczyk, Wojciech Additive subgroups of topological vector spaces, Springer, Lecture Notes in Mathematics, Tome 1466 (1991), vi+178 pages | Article | MR 1119302 | Zbl 0743.46002

[4] Bekka, Bachir; De La Harpe, Pierre; Valette, Alain Kazhdan’s property (T), Cambridge University Press, New Mathematical Monographs, Tome 11 (2008), xiv+472 pages | Article | MR 2415834 | Zbl 1146.22009

[5] Dowerk, Philip A.; Thom, Andreas Bounded Normal Generation and Invariant Automatic Continuity (2015) (https://arxiv.org/abs/1506.08549, submitted for publication)

[6] Dowerk, Philip A.; Thom, Andreas A new proof of extreme amenability of the unitary group of the hyperfinite II 1 factor, Bull. Belg. Math. Soc. Simon Stevin, Tome 22 (2015) no. 5, pp. 837-841 http://projecteuclid.org/euclid.bbms/1450389251 | MR 3435085 | Zbl 1347.46046

[7] Dudko, Artem; Medynets, Konstantin On characters of inductive limits of symmetric groups, J. Funct. Anal., Tome 264 (2013) no. 7, pp. 1565-1598 | Article | MR 3019724 | Zbl 1271.20008

[8] Elek, Gábor The rank of finitely generated modules over group algebras, Proc. Am. Math. Soc., Tome 131 (2003) no. 11, pp. 3477-3485 | Article | MR 1991759 | Zbl 1037.43001

[9] Elek, Gábor Infinite dimensional representations of finite dimensional algebras and amenability (2015) (https://arxiv.org/abs/1512.03959v1 )

[10] Elek, Gábor Convergence and limits of linear representations of finite groups, J. Algebra, Tome 450 (2016), pp. 588-615 | Article | MR 3449705 | Zbl 06537426

[11] Galindo, Jorge On unitary representability of topological groups, Math. Z., Tome 263 (2009) no. 1, pp. 211-220 | Article | MR 2529494 | Zbl 1176.43004

[12] Gao, Su Unitary group actions and Hilbertian Polish metric spaces, Logic and its applications, American Mathematical Society (Contemporary Mathematics) Tome 380 (2005), pp. 53-72 | Article | MR 2167574 | Zbl 1085.54026

[13] Giordano, Thierry; Pestov, Vladimir Some extremely amenable groups, C. R., Math., Acad. Sci. Paris, Tome 334 (2002) no. 4, pp. 273-278 | Article | MR 1891002 | Zbl 0995.43001

[14] Giordano, Thierry; Pestov, Vladimir Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu, Tome 6 (2007) no. 2, pp. 279-315 | Article | MR 2311665 | Zbl 1133.22001

[15] Gluck, David Sharper character value estimates for groups of Lie type, J. Algebra, Tome 174 (1995) no. 1, pp. 229-266 | Article | MR 1332870 | Zbl 0842.20014

[16] Gonçalves, Jairo Z.; Mandel, Arnaldo; Shirvani, Mazi Free products of units in algebras. I. Quaternion algebras, J. Algebra, Tome 214 (1999) no. 1, pp. 301-316 | Article | MR 1684864 | Zbl 0934.16026

[17] Gromov, Mikhael Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), Cambridge University Press (London Mathematical Society Lecture Note Series) Tome 182 (1993), pp. 1-295 | MR 1253544 | Zbl 0841.20039

[18] Halperin, Israel Von Neumann’s manuscript on inductive limits of regular rings, Canad. J. Math., Tome 20 (1968), pp. 477-483 | Article | MR 0223408 | Zbl 0164.34802

[19] Herer, Wojchiech; Christensen, Jens Peter Reus On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann., Tome 213 (1975), pp. 203-210 | Article | MR 0412369 | Zbl 031.28002

[20] Kirillov, Alexandre Aleksandrovich Positive-definite functions on a group of matrices with elements from a discrete field, Dokl. Akad. Nauk SSSR, Tome 162 (1965), pp. 503-505 | MR 0193183 | Zbl 0133.37505

[21] Ledoux, Michel The concentration of measure phenomenon, American Mathematical Society, Mathematical Surveys and Monographs, Tome 89 (2001), x+181 pages | MR 1849347 | Zbl 0995.60002

[22] Liebeck, Martin W.; Shalev, Aner Diameters of finite simple groups: sharp bounds and applications, Ann. Math., Tome 154 (2001) no. 2, pp. 383-406 | Article | MR 1865975 | Zbl 1003.20014

[23] Linnell, Peter A. Noncommutative localization in group rings, Non-commutative localization in algebra and topology, Cambridge University Press (London Mathematical Society Lecture Note Series) Tome 330 (2006), pp. 40-59 | Article | MR 2222481 | Zbl 1123.16016

[24] Megrelishvili, Michael G. Reflexively but not unitarily representable topological groups, Topol. Proc., Tome 25 (2000), pp. 615-625 | Zbl 1026.22006

[25] Megrelishvili, Michael G. Every semitopological semigroup compactification of the group H + [0,1] is trivial, Semigroup Forum, Tome 63 (2001) no. 3, pp. 357-370 | Article | MR 1851816 | Zbl 1009.22004

[26] Von Neumann, John Continuous geometry, Princeton University Press, Princeton Landmarks in Mathematics (1998), xiv+299 pages (With a foreword by Israel Halperin) | Article | MR 1619428 | Zbl 0919.51002

[27] Ornstein, Donald S.; Weiss, Benjamin Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., Tome 48 (1987), pp. 1-141 | Article | MR 910005 | Zbl 0637.28015

[28] Pestov, Vladimir Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon, American Mathematical Society, University Lecture Series, Tome 40 (2006), vii+192 pages | Article | MR 2277969 | Zbl 1123.37003

[29] Peterson, Jesse; Thom, Andreas Character rigidity for special linear groups, J. Reine Angew. Math., Tome 716 (2016), pp. 207-228 | Article | MR 3518376 | Zbl 1347.20051

[30] Popa, Sorin; Takesaki, Masamichi The topological structure of the unitary and automorphism groups of a factor, Commun. Math. Phys., Tome 155 (1993) no. 1, pp. 93-101 http://projecteuclid.org/euclid.cmp/1104253201 | Article | MR 1228527 | Zbl 0799.46074

[31] Schneider, Friedrich Martin; Thom, Andreas On Følner sets in topological groups (2016) (https://arxiv.org/abs/1608.08185, submitted for publication)

[32] Schneider, Friedrich Martin; Thom, Andreas Topological matchings and amenability, Fundam. Math., Tome 238 (2017) no. 2, pp. 167-200 | Article | MR 3640617 | Zbl 06714071

[33] Stenström, Bo Rings of quotients. An introduction to methods of ring theory, Springer, Die Grundlehren der mathematischen Wissenschaften, Tome 217 (1975), viii+309 pages | MR 0389953 | Zbl 0296.16001

[34] Stolz, Abel; Thom, Andreas On the lattice of normal subgroups in ultraproducts of compact simple groups, Proc. Lond. Math. Soc., Tome 108 (2014) no. 1, pp. 73-102 | Article | MR 3162821 | Zbl 1349.20017

[35] Tamari, Dov A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept (Proceedings of the ICM) Tome 3 (1954), p. 439-440

[36] Thom, Andreas; Wilson, John S. Metric ultraproducts of finite simple groups, C. R., Math., Acad. Sci. Paris, Tome 352 (2014) no. 6, pp. 463-466 | Article | MR 3210125 | Zbl 1323.22003