Bounded negativity, Harbourne constants and transversal arrangements of curves
[Négativité bornée, constantes de Harbourne et arrangements transverses de courbes]
Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2719-2735.

La conjecture de la négativité bornée prédit que pour toute surface complexe projective X, il existe un nombre b(X) tel que l’inégalité C 2 -b(X) ait lieu pour toute courbe réduite CX. Pour un morphisme birationnel f:YX, certains invariants (les constantes de Harbourne) ont été introduits afin de relier les nombres b(X) et b(Y) à la complexité de f. Ces invariants ont été étudiés quand f est l’éclatement en tous les points singuliers d’un arrangement de droites, de coniques et de cubiques. Dans cette note, nous étendons ces considérations aux éclatements de 2 aux points singuliers d’arrangements de courbes de degré arbitraire d. Le résultat principal dans cette direction est le théorème B. Ensuite, nous généralisons considérablement et modifions l’approche usuelle afin d’étudier les arrangements transverses de courbes suffisamment positives sur n’importe quelle surface ayant dimension de Kodaira positive ou nulle. Le principal résulat obtenu dans ce cadre général est le théorème A.

The Bounded Negativity Conjecture predicts that for every complex projective surface X there exists a number b(X) such that C 2 -b(X) holds for all reduced curves CX. For birational surfaces f:YX there have been introduced certain invariants (Harbourne constants) relating to the effect the numbers b(X), b(Y) and the complexity of the map f. These invariants have been studied when f is the blowup of all singular points of an arrangement of lines in 2 , of conics and of cubics. In the present note we extend these considerations to blowups of 2 at singular points of arrangements of curves of arbitrary degree d. The main result in this direction is stated in Theorem B. We also considerably generalize and modify the approach witnessed so far and study transversal arrangements of sufficiently positive curves on arbitrary surfaces with the non-negative Kodaira dimension. The main result obtained in this general setting is presented in Theorem A.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3149
Classification : 14C20, 14J70
Keywords: curve arrangements, algebraic surfaces, Miyaoka inequality, blow-ups, negative curves, bounded negativity conjecture
Mots-clés : arrangements de courbes, surfaces algébriques, inégalité de Miyaoka, courbes négatives, conjecture de la négativité Bornée

Pokora, Piotr 1 ; Roulleau, Xavier 2 ; Szemberg, Tomasz 1

1 Department of Mathematics Pedagogical University of Cracow Podchorążych 2 30-084 Kraków (Poland)
2 Laboratoire de Mathématiques et Applications Université de Poitiers, UMR CNRS 7348 Téléport 2 - BP 30179 86962 Futuroscope Chasseneuil (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2017__67_6_2719_0,
     author = {Pokora, Piotr and Roulleau, Xavier and Szemberg, Tomasz},
     title = {Bounded negativity, {Harbourne} constants and transversal arrangements of curves},
     journal = {Annales de l'Institut Fourier},
     pages = {2719--2735},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     doi = {10.5802/aif.3149},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3149/}
}
TY  - JOUR
AU  - Pokora, Piotr
AU  - Roulleau, Xavier
AU  - Szemberg, Tomasz
TI  - Bounded negativity, Harbourne constants and transversal arrangements of curves
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2719
EP  - 2735
VL  - 67
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3149/
DO  - 10.5802/aif.3149
LA  - en
ID  - AIF_2017__67_6_2719_0
ER  - 
%0 Journal Article
%A Pokora, Piotr
%A Roulleau, Xavier
%A Szemberg, Tomasz
%T Bounded negativity, Harbourne constants and transversal arrangements of curves
%J Annales de l'Institut Fourier
%D 2017
%P 2719-2735
%V 67
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3149/
%R 10.5802/aif.3149
%G en
%F AIF_2017__67_6_2719_0
Pokora, Piotr; Roulleau, Xavier; Szemberg, Tomasz. Bounded negativity, Harbourne constants and transversal arrangements of curves. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2719-2735. doi : 10.5802/aif.3149. https://aif.centre-mersenne.org/articles/10.5802/aif.3149/

[1] Bauer, Thomas; Di Rocco, Sandra; Harbourne, Brian; Huizenga, Jack; Lundman, Anders; Pokora, Piotr; Szemberg, Tomasz Bounded negativity and arrangements of lines, Int. Math. Res. Not. (2015) no. 19, pp. 9456-9471 | DOI | MR | Zbl

[2] Bauer, Thomas; Harbourne, Brian; Knutsen, Andreas Leopold; Küronya, Alex; Müller-Stach, Stefan; Roulleau, Xavier; Szemberg, Tomasz Negative curves on algebraic surfaces, Duke Math. J., Volume 162 (2013) no. 10, pp. 1877-1894 | DOI | MR | Zbl

[3] Dorfmeister, Josef G. Bounded Negativity and Symplectic 4-Manifolds (2016) (https://arxiv.org/abs/1601.01202)

[4] Greuel, Gert-Martin; Lossen, Christoph; Shustin, Eugenii Castelnuovo function, zero-dimensional schemes and singular plane curves, J. Algebr. Geom., Volume 9 (2000) no. 4, pp. 663-710 | MR | Zbl

[5] Harbourne, Brian Global aspects of the geometry of surfaces, Ann. Univ. Paedagog. Crac. Stud. Math., Volume 9 (2010), pp. 5-41 | MR | Zbl

[6] Hemperly, John C. The parabolic contribution to the number of linearly independent automorphic forms on a certain bounded domain, Am. J. Math., Volume 94 (1972), pp. 1078-1100 | DOI | MR | Zbl

[7] Hirzebruch, Friedrich Arrangements of lines and algebraic surfaces, Arithmetic and geometry, Vol. II: Geometry (Progress in Mathematics), Volume 36, Birkhäuser, 1983, pp. 113-140 | MR | Zbl

[8] Hirzebruch, Friedrich Singularities of algebraic surfaces and characteristic numbers, The Lefschetz centennial conference, Part I (Mexico City, 1984) (Contemporary Mathematics), Volume 58, American Mathematical Society, 1986, pp. 141-155 | DOI | MR | Zbl

[9] Miyaoka, Yoichi The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann., Volume 268 (1984) no. 2, pp. 159-171 | DOI | MR | Zbl

[10] Miyaoka, Yoichi The orbibundle Miyaoka-Yau-Sakai inequality and an effective Bogomolov-McQuillan theorem, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 403-417 | DOI | MR | Zbl

[11] Namba, Makoto Branched coverings and algebraic functions, Pitman Research Notes in Mathematics Series, 161, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987, viii+201 pages | MR | Zbl

[12] Pokora, Piotr; Tutaj-Gasińska, Halszka Harbourne constants and conic configurations on the projective plane, Math. Nachr., Volume 289 (2016) no. 7, pp. 888-894 | DOI | MR | Zbl

[13] Roulleau, Xavier Bounded negativity, Miyaoka-Sakai inequality and elliptic curve configurations, Int. Math. Res. Not., Volume 2017 (2017) no. 8, pp. 2480-2496 | DOI

[14] Sakai, Fumio Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Ann., Volume 254 (1980) no. 2, pp. 89-120 | DOI | MR | Zbl

[15] Tang, Li Zhong Algebraic surfaces associated to arrangements of conics, Soochow J. Math., Volume 21 (1995) no. 4, pp. 427-440 | MR | Zbl

Cité par Sources :