Towers for commuting endomorphisms, and combinatorial applications  [ Tours pour endomorphismes commutants, et applications combinatoires ]
Annales de l'Institut Fourier, Tome 66 (2016) no. 4, pp. 1529-1544.

Nous donnons une démonstration élémentaire du lemme de Rokhlin pour les transformations non inversibles commutantes préservant la mesure, et nous présentons des applications combinatoires.

We give an elementary proof of a generalization of Rokhlin’s lemma for commuting non-invertible measure-preserving transformations, and we present several combinatorial applications.

Reçu le : 2015-06-30
Révisé le : 2015-12-18
Accepté le : 2016-01-21
Publié le : 2016-07-28
DOI : https://doi.org/10.5802/aif.3042
Classification : 28D05,  37A05,  05D99,  11B30
Mots clés: Lemme de Rokhlin, endomorphismes commutants, équations linéaires.
@article{AIF_2016__66_4_1529_0,
     author = {Avila, Artur and Candela, Pablo},
     title = {Towers for commuting endomorphisms, and combinatorial applications},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {66},
     number = {4},
     year = {2016},
     pages = {1529-1544},
     doi = {10.5802/aif.3042},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2016__66_4_1529_0/}
}
Avila, Artur; Candela, Pablo. Towers for commuting endomorphisms, and combinatorial applications. Annales de l'Institut Fourier, Tome 66 (2016) no. 4, pp. 1529-1544. doi : 10.5802/aif.3042. https://aif.centre-mersenne.org/item/AIF_2016__66_4_1529_0/

[1] Bogachev, V. I. Measure theory. Vol. II, Springer-Verlag, Berlin, 2007, xiv+575 pages | Article

[2] Cantor, David G.; Gordon, Basil Sequences of integers with missing differences, J. Combinatorial Theory Ser. A, Tome 14 (1973), pp. 281-287

[3] Conze, J. P. Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Tome 25 (1972/73), pp. 11-30

[4] Cornfeld, I. P.; Fomin, S. V.; Sinaĭ, Ya. G. Ergodic theory, Grundlehren der Mathematischen Wissenschaften, Tome 245, Springer-Verlag, New York, 1982, x+486 pages | Article

[5] Fiz Pontiveros, Gonzalo Sums of dilates in p , Combin. Probab. Comput., Tome 22 (2013) no. 2, pp. 282-293 | Article

[6] Heinemann, Stefan-M.; Schmitt, Oliver Rokhlin’s lemma for non-invertible maps, Dynam. Systems Appl., Tome 10 (2001) no. 2, pp. 201-213

[7] Kalikow, Steven; McCutcheon, Randall An outline of ergodic theory, Cambridge Studies in Advanced Mathematics, Tome 122, Cambridge University Press, Cambridge, 2010, viii+174 pages | Article

[8] Katznelson, Yitzhak; Weiss, Benjamin Commuting measure-preserving transformations, Israel J. Math., Tome 12 (1972), pp. 161-173

[9] Kornfeld, Isaac Some old and new Rokhlin towers, Chapel Hill Ergodic Theory Workshops (Contemp. Math.) Tome 356, Amer. Math. Soc., Providence, RI, 2004, pp. 145-169 | Article

[10] Lagarias, Jeffrey C.; Wang, Yang Tiling the line with translates of one tile, Invent. Math., Tome 124 (1996) no. 1-3, pp. 341-365 | Article

[11] Petersen, Karl Ergodic theory, Cambridge Studies in Advanced Mathematics, Tome 2, Cambridge University Press, Cambridge, 1989, xii+329 pages (Corrected reprint of the 1983 original)

[12] Rokhlin, V. A. A “general” measure-preserving transformation is not mixing, Dokl. Akad. Nauk SSSR, n. Ser., Tome 60 (1948), pp. 349-351

[13] Tao, Terence; Vu, Van Additive combinatorics, Cambridge Studies in Advanced Mathematics, Tome 105, Cambridge University Press, Cambridge, 2006, xviii+512 pages | Article

[14] Weiss, Benjamin On the work of V. A. Rokhlin in ergodic theory, Ergodic Theory Dynam. Systems, Tome 9 (1989) no. 4, pp. 619-627 | Article

[15] Zhu, Xuding Circular chromatic number: a survey, Discrete Math., Tome 229 (2001) no. 1-3, pp. 371-410 (Combinatorics, graph theory, algorithms and applications) | Article