Towers for commuting endomorphisms, and combinatorial applications
Annales de l'Institut Fourier, Volume 66 (2016) no. 4, p. 1529-1544
We give an elementary proof of a generalization of Rokhlin’s lemma for commuting non-invertible measure-preserving transformations, and we present several combinatorial applications.
Nous donnons une démonstration élémentaire du lemme de Rokhlin pour les transformations non inversibles commutantes préservant la mesure, et nous présentons des applications combinatoires.
Received : 2015-06-30
Revised : 2015-12-18
Accepted : 2016-01-21
Published online : 2016-07-28
Classification:  28D05,  37A05,  05D99,  11B30
Keywords: Rokhlin’s lemma, commuting endomorphisms, linear equations
@article{AIF_2016__66_4_1529_0,
     author = {Avila, Artur and Candela, Pablo},
     title = {Towers for commuting endomorphisms, and combinatorial applications},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {66},
     number = {4},
     year = {2016},
     pages = {1529-1544},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2016__66_4_1529_0}
}
Towers for commuting endomorphisms, and combinatorial applications. Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1529-1544. https://aif.centre-mersenne.org/item/AIF_2016__66_4_1529_0/

[1] Bogachev, V. I. Measure theory. Vol. II, Springer-Verlag, Berlin (2007), xiv+575 pages | Article

[2] Cantor, David G.; Gordon, Basil Sequences of integers with missing differences, J. Combinatorial Theory Ser. A, Tome 14 (1973), pp. 281-287

[3] Conze, J. P. Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Tome 25 (1972/73), pp. 11-30

[4] Cornfeld, I. P.; Fomin, S. V.; Sinaĭ, Ya. G. Ergodic theory, Springer-Verlag, New York, Grundlehren der Mathematischen Wissenschaften, Tome 245 (1982), x+486 pages | Article

[5] Fiz Pontiveros, Gonzalo Sums of dilates in p , Combin. Probab. Comput., Tome 22 (2013) no. 2, pp. 282-293 | Article

[6] Heinemann, Stefan-M.; Schmitt, Oliver Rokhlin’s lemma for non-invertible maps, Dynam. Systems Appl., Tome 10 (2001) no. 2, pp. 201-213

[7] Kalikow, Steven; Mccutcheon, Randall An outline of ergodic theory, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 122 (2010), viii+174 pages | Article

[8] Katznelson, Yitzhak; Weiss, Benjamin Commuting measure-preserving transformations, Israel J. Math., Tome 12 (1972), pp. 161-173

[9] Kornfeld, Isaac Some old and new Rokhlin towers, Chapel Hill Ergodic Theory Workshops, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 356 (2004), pp. 145-169 | Article

[10] Lagarias, Jeffrey C.; Wang, Yang Tiling the line with translates of one tile, Invent. Math., Tome 124 (1996) no. 1-3, pp. 341-365 | Article

[11] Petersen, Karl Ergodic theory, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 2 (1989), xii+329 pages (Corrected reprint of the 1983 original)

[12] Rokhlin, V. A. A “general” measure-preserving transformation is not mixing, Dokl. Akad. Nauk SSSR, n. Ser., Tome 60 (1948), pp. 349-351

[13] Tao, Terence; Vu, Van Additive combinatorics, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 105 (2006), xviii+512 pages | Article

[14] Weiss, Benjamin On the work of V. A. Rokhlin in ergodic theory, Ergodic Theory Dynam. Systems, Tome 9 (1989) no. 4, pp. 619-627 | Article

[15] Zhu, Xuding Circular chromatic number: a survey, Discrete Math., Tome 229 (2001) no. 1-3, pp. 371-410 (Combinatorics, graph theory, algorithms and applications) | Article