Towers for commuting endomorphisms, and combinatorial applications
Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1529-1544.

We give an elementary proof of a generalization of Rokhlin’s lemma for commuting non-invertible measure-preserving transformations, and we present several combinatorial applications.

Nous donnons une démonstration élémentaire du lemme de Rokhlin pour les transformations non inversibles commutantes préservant la mesure, et nous présentons des applications combinatoires.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3042
Classification: 28D05, 37A05, 05D99, 11B30
Keywords: Rokhlin’s lemma, commuting endomorphisms, linear equations
Mot clés : Lemme de Rokhlin, endomorphismes commutants, équations linéaires.
Avila, Artur 1, 2; Candela, Pablo 3

1 & IMPA Estrada Dona Castorina 110 Rio de Janeiro, Brazil
2 CNRS, IMJ-PRG, UMR 7586, Univ Paris Diderot, Sorbonnes Universités UPMC Univ Paris 06 F-75013, Paris, France
3 Alfréd Rényi Institute of Mathematics 13-15 Reáltanoda utca 1056 Budapest, Hungary
@article{AIF_2016__66_4_1529_0,
     author = {Avila, Artur and Candela, Pablo},
     title = {Towers for commuting endomorphisms, and combinatorial applications},
     journal = {Annales de l'Institut Fourier},
     pages = {1529--1544},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {66},
     number = {4},
     year = {2016},
     doi = {10.5802/aif.3042},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3042/}
}
TY  - JOUR
AU  - Avila, Artur
AU  - Candela, Pablo
TI  - Towers for commuting endomorphisms, and combinatorial applications
JO  - Annales de l'Institut Fourier
PY  - 2016
SP  - 1529
EP  - 1544
VL  - 66
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3042/
DO  - 10.5802/aif.3042
LA  - en
ID  - AIF_2016__66_4_1529_0
ER  - 
%0 Journal Article
%A Avila, Artur
%A Candela, Pablo
%T Towers for commuting endomorphisms, and combinatorial applications
%J Annales de l'Institut Fourier
%D 2016
%P 1529-1544
%V 66
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3042/
%R 10.5802/aif.3042
%G en
%F AIF_2016__66_4_1529_0
Avila, Artur; Candela, Pablo. Towers for commuting endomorphisms, and combinatorial applications. Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1529-1544. doi : 10.5802/aif.3042. https://aif.centre-mersenne.org/articles/10.5802/aif.3042/

[1] Bogachev, V. I. Measure theory. Vol. II, Springer-Verlag, Berlin, 2007, xiv+575 pages | DOI

[2] Cantor, David G.; Gordon, Basil Sequences of integers with missing differences, J. Combinatorial Theory Ser. A, Volume 14 (1973), pp. 281-287

[3] Conze, J. P. Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 25 (1972/73), pp. 11-30

[4] Cornfeld, I. P.; Fomin, S. V.; Sinaĭ, Ya. G. Ergodic theory, Grundlehren der Mathematischen Wissenschaften, 245, Springer-Verlag, New York, 1982, x+486 pages | DOI

[5] Fiz Pontiveros, Gonzalo Sums of dilates in p , Combin. Probab. Comput., Volume 22 (2013) no. 2, pp. 282-293 | DOI

[6] Heinemann, Stefan-M.; Schmitt, Oliver Rokhlin’s lemma for non-invertible maps, Dynam. Systems Appl., Volume 10 (2001) no. 2, pp. 201-213

[7] Kalikow, Steven; McCutcheon, Randall An outline of ergodic theory, Cambridge Studies in Advanced Mathematics, 122, Cambridge University Press, Cambridge, 2010, viii+174 pages | DOI

[8] Katznelson, Yitzhak; Weiss, Benjamin Commuting measure-preserving transformations, Israel J. Math., Volume 12 (1972), pp. 161-173

[9] Kornfeld, Isaac Some old and new Rokhlin towers, Chapel Hill Ergodic Theory Workshops (Contemp. Math.), Volume 356, Amer. Math. Soc., Providence, RI, 2004, pp. 145-169 | DOI

[10] Lagarias, Jeffrey C.; Wang, Yang Tiling the line with translates of one tile, Invent. Math., Volume 124 (1996) no. 1-3, pp. 341-365 | DOI

[11] Petersen, Karl Ergodic theory, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1989, xii+329 pages (Corrected reprint of the 1983 original)

[12] Rokhlin, V. A. A “general” measure-preserving transformation is not mixing, Dokl. Akad. Nauk SSSR, n. Ser., Volume 60 (1948), pp. 349-351

[13] Tao, Terence; Vu, Van Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006, xviii+512 pages | DOI

[14] Weiss, Benjamin On the work of V. A. Rokhlin in ergodic theory, Ergodic Theory Dynam. Systems, Volume 9 (1989) no. 4, pp. 619-627 | DOI

[15] Zhu, Xuding Circular chromatic number: a survey, Discrete Math., Volume 229 (2001) no. 1-3, pp. 371-410 (Combinatorics, graph theory, algorithms and applications) | DOI

Cited by Sources: