We give an elementary proof of a generalization of Rokhlin’s lemma for commuting non-invertible measure-preserving transformations, and we present several combinatorial applications.
Nous donnons une démonstration élémentaire du lemme de Rokhlin pour les transformations non inversibles commutantes préservant la mesure, et nous présentons des applications combinatoires.
Revised:
Accepted:
Published online:
Keywords: Rokhlin’s lemma, commuting endomorphisms, linear equations
@article{AIF_2016__66_4_1529_0, author = {Avila, Artur and Candela, Pablo}, title = {Towers for commuting endomorphisms, and combinatorial applications}, journal = {Annales de l'Institut Fourier}, pages = {1529--1544}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {4}, year = {2016}, doi = {10.5802/aif.3042}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3042/} }
TY - JOUR TI - Towers for commuting endomorphisms, and combinatorial applications JO - Annales de l'Institut Fourier PY - 2016 DA - 2016/// SP - 1529 EP - 1544 VL - 66 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3042/ UR - https://doi.org/10.5802/aif.3042 DO - 10.5802/aif.3042 LA - en ID - AIF_2016__66_4_1529_0 ER -
Avila, Artur; Candela, Pablo. Towers for commuting endomorphisms, and combinatorial applications. Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1529-1544. doi : 10.5802/aif.3042. https://aif.centre-mersenne.org/articles/10.5802/aif.3042/
[1] Measure theory. Vol. II, Springer-Verlag, Berlin, 2007, xiv+575 pages | DOI
[2] Sequences of integers with missing differences, J. Combinatorial Theory Ser. A, Tome 14 (1973), pp. 281-287
[3] Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Tome 25 (1972/73), pp. 11-30
[4] Ergodic theory, Grundlehren der Mathematischen Wissenschaften, Tome 245, Springer-Verlag, New York, 1982, x+486 pages | DOI
[5] Sums of dilates in , Combin. Probab. Comput., Tome 22 (2013) no. 2, pp. 282-293 | DOI
[6] Rokhlin’s lemma for non-invertible maps, Dynam. Systems Appl., Tome 10 (2001) no. 2, pp. 201-213
[7] An outline of ergodic theory, Cambridge Studies in Advanced Mathematics, Tome 122, Cambridge University Press, Cambridge, 2010, viii+174 pages | DOI
[8] Commuting measure-preserving transformations, Israel J. Math., Tome 12 (1972), pp. 161-173
[9] Some old and new Rokhlin towers, Chapel Hill Ergodic Theory Workshops (Contemp. Math.) Tome 356, Amer. Math. Soc., Providence, RI, 2004, pp. 145-169 | DOI
[10] Tiling the line with translates of one tile, Invent. Math., Tome 124 (1996) no. 1-3, pp. 341-365 | DOI
[11] Ergodic theory, Cambridge Studies in Advanced Mathematics, Tome 2, Cambridge University Press, Cambridge, 1989, xii+329 pages (Corrected reprint of the 1983 original)
[12] A “general” measure-preserving transformation is not mixing, Dokl. Akad. Nauk SSSR, n. Ser., Tome 60 (1948), pp. 349-351
[13] Additive combinatorics, Cambridge Studies in Advanced Mathematics, Tome 105, Cambridge University Press, Cambridge, 2006, xviii+512 pages | DOI
[14] On the work of V. A. Rokhlin in ergodic theory, Ergodic Theory Dynam. Systems, Tome 9 (1989) no. 4, pp. 619-627 | DOI
[15] Circular chromatic number: a survey, Discrete Math., Tome 229 (2001) no. 1-3, pp. 371-410 (Combinatorics, graph theory, algorithms and applications) | DOI
Cited by Sources: