We give an elementary proof of a generalization of Rokhlin’s lemma for commuting non-invertible measure-preserving transformations, and we present several combinatorial applications.
Nous donnons une démonstration élémentaire du lemme de Rokhlin pour les transformations non inversibles commutantes préservant la mesure, et nous présentons des applications combinatoires.
Revised:
Accepted:
Published online:
Keywords: Rokhlin’s lemma, commuting endomorphisms, linear equations
Mot clés : Lemme de Rokhlin, endomorphismes commutants, équations linéaires.
@article{AIF_2016__66_4_1529_0, author = {Avila, Artur and Candela, Pablo}, title = {Towers for commuting endomorphisms, and combinatorial applications}, journal = {Annales de l'Institut Fourier}, pages = {1529--1544}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {4}, year = {2016}, doi = {10.5802/aif.3042}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3042/} }
TY - JOUR AU - Avila, Artur AU - Candela, Pablo TI - Towers for commuting endomorphisms, and combinatorial applications JO - Annales de l'Institut Fourier PY - 2016 SP - 1529 EP - 1544 VL - 66 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3042/ DO - 10.5802/aif.3042 LA - en ID - AIF_2016__66_4_1529_0 ER -
%0 Journal Article %A Avila, Artur %A Candela, Pablo %T Towers for commuting endomorphisms, and combinatorial applications %J Annales de l'Institut Fourier %D 2016 %P 1529-1544 %V 66 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3042/ %R 10.5802/aif.3042 %G en %F AIF_2016__66_4_1529_0
Avila, Artur; Candela, Pablo. Towers for commuting endomorphisms, and combinatorial applications. Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1529-1544. doi : 10.5802/aif.3042. https://aif.centre-mersenne.org/articles/10.5802/aif.3042/
[1] Measure theory. Vol. II, Springer-Verlag, Berlin, 2007, xiv+575 pages | DOI
[2] Sequences of integers with missing differences, J. Combinatorial Theory Ser. A, Volume 14 (1973), pp. 281-287
[3] Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 25 (1972/73), pp. 11-30
[4] Ergodic theory, Grundlehren der Mathematischen Wissenschaften, 245, Springer-Verlag, New York, 1982, x+486 pages | DOI
[5] Sums of dilates in , Combin. Probab. Comput., Volume 22 (2013) no. 2, pp. 282-293 | DOI
[6] Rokhlin’s lemma for non-invertible maps, Dynam. Systems Appl., Volume 10 (2001) no. 2, pp. 201-213
[7] An outline of ergodic theory, Cambridge Studies in Advanced Mathematics, 122, Cambridge University Press, Cambridge, 2010, viii+174 pages | DOI
[8] Commuting measure-preserving transformations, Israel J. Math., Volume 12 (1972), pp. 161-173
[9] Some old and new Rokhlin towers, Chapel Hill Ergodic Theory Workshops (Contemp. Math.), Volume 356, Amer. Math. Soc., Providence, RI, 2004, pp. 145-169 | DOI
[10] Tiling the line with translates of one tile, Invent. Math., Volume 124 (1996) no. 1-3, pp. 341-365 | DOI
[11] Ergodic theory, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1989, xii+329 pages (Corrected reprint of the 1983 original)
[12] A “general” measure-preserving transformation is not mixing, Dokl. Akad. Nauk SSSR, n. Ser., Volume 60 (1948), pp. 349-351
[13] Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006, xviii+512 pages | DOI
[14] On the work of V. A. Rokhlin in ergodic theory, Ergodic Theory Dynam. Systems, Volume 9 (1989) no. 4, pp. 619-627 | DOI
[15] Circular chromatic number: a survey, Discrete Math., Volume 229 (2001) no. 1-3, pp. 371-410 (Combinatorics, graph theory, algorithms and applications) | DOI
Cited by Sources: