Towers for commuting endomorphisms, and combinatorial applications
Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1529-1544.

We give an elementary proof of a generalization of Rokhlin’s lemma for commuting non-invertible measure-preserving transformations, and we present several combinatorial applications.

Nous donnons une démonstration élémentaire du lemme de Rokhlin pour les transformations non inversibles commutantes préservant la mesure, et nous présentons des applications combinatoires.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3042
Classification: 28D05,  37A05,  05D99,  11B30
Keywords: Rokhlin’s lemma, commuting endomorphisms, linear equations
@article{AIF_2016__66_4_1529_0,
     author = {Avila, Artur and Candela, Pablo},
     title = {Towers for commuting endomorphisms, and combinatorial applications},
     journal = {Annales de l'Institut Fourier},
     pages = {1529--1544},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {66},
     number = {4},
     year = {2016},
     doi = {10.5802/aif.3042},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3042/}
}
TY  - JOUR
TI  - Towers for commuting endomorphisms, and combinatorial applications
JO  - Annales de l'Institut Fourier
PY  - 2016
DA  - 2016///
SP  - 1529
EP  - 1544
VL  - 66
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3042/
UR  - https://doi.org/10.5802/aif.3042
DO  - 10.5802/aif.3042
LA  - en
ID  - AIF_2016__66_4_1529_0
ER  - 
%0 Journal Article
%T Towers for commuting endomorphisms, and combinatorial applications
%J Annales de l'Institut Fourier
%D 2016
%P 1529-1544
%V 66
%N 4
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.3042
%R 10.5802/aif.3042
%G en
%F AIF_2016__66_4_1529_0
Avila, Artur; Candela, Pablo. Towers for commuting endomorphisms, and combinatorial applications. Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1529-1544. doi : 10.5802/aif.3042. https://aif.centre-mersenne.org/articles/10.5802/aif.3042/

[1] Bogachev, V. I. Measure theory. Vol. II, Springer-Verlag, Berlin, 2007, xiv+575 pages | DOI

[2] Cantor, David G.; Gordon, Basil Sequences of integers with missing differences, J. Combinatorial Theory Ser. A, Tome 14 (1973), pp. 281-287

[3] Conze, J. P. Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Tome 25 (1972/73), pp. 11-30

[4] Cornfeld, I. P.; Fomin, S. V.; Sinaĭ, Ya. G. Ergodic theory, Grundlehren der Mathematischen Wissenschaften, Tome 245, Springer-Verlag, New York, 1982, x+486 pages | DOI

[5] Fiz Pontiveros, Gonzalo Sums of dilates in p , Combin. Probab. Comput., Tome 22 (2013) no. 2, pp. 282-293 | DOI

[6] Heinemann, Stefan-M.; Schmitt, Oliver Rokhlin’s lemma for non-invertible maps, Dynam. Systems Appl., Tome 10 (2001) no. 2, pp. 201-213

[7] Kalikow, Steven; McCutcheon, Randall An outline of ergodic theory, Cambridge Studies in Advanced Mathematics, Tome 122, Cambridge University Press, Cambridge, 2010, viii+174 pages | DOI

[8] Katznelson, Yitzhak; Weiss, Benjamin Commuting measure-preserving transformations, Israel J. Math., Tome 12 (1972), pp. 161-173

[9] Kornfeld, Isaac Some old and new Rokhlin towers, Chapel Hill Ergodic Theory Workshops (Contemp. Math.) Tome 356, Amer. Math. Soc., Providence, RI, 2004, pp. 145-169 | DOI

[10] Lagarias, Jeffrey C.; Wang, Yang Tiling the line with translates of one tile, Invent. Math., Tome 124 (1996) no. 1-3, pp. 341-365 | DOI

[11] Petersen, Karl Ergodic theory, Cambridge Studies in Advanced Mathematics, Tome 2, Cambridge University Press, Cambridge, 1989, xii+329 pages (Corrected reprint of the 1983 original)

[12] Rokhlin, V. A. A “general” measure-preserving transformation is not mixing, Dokl. Akad. Nauk SSSR, n. Ser., Tome 60 (1948), pp. 349-351

[13] Tao, Terence; Vu, Van Additive combinatorics, Cambridge Studies in Advanced Mathematics, Tome 105, Cambridge University Press, Cambridge, 2006, xviii+512 pages | DOI

[14] Weiss, Benjamin On the work of V. A. Rokhlin in ergodic theory, Ergodic Theory Dynam. Systems, Tome 9 (1989) no. 4, pp. 619-627 | DOI

[15] Zhu, Xuding Circular chromatic number: a survey, Discrete Math., Tome 229 (2001) no. 1-3, pp. 371-410 (Combinatorics, graph theory, algorithms and applications) | DOI

Cited by Sources: