Let be an immersed surface in with constant mean curvature. We consider the traceless Weingarten operator associated to the second fundamental form of the surface, and we introduce a tensor , related to the Abresch-Rosenberg quadratic differential form. We establish equations of Simons type for both and . By using these equations, we characterize some immersions for which or is appropriately bounded.
Soit une surface immergée dans avec une courbure moyenne constante. Nous considérons l’opérateur de Weingarten à trace nulle associé à la seconde forme fondamentale de la surface et nous introduisons un tenseur , liés à la forme quadratique de Abresch-Rosenberg. Nous établissons les équations de type Simons pour et . En utilisant ces équations, nous caractérisons les immersions pour lesquelles ou sont bornés.
Keywords: Surface with constant mean curvature, Simons type equation, Codazzi’s equation
Mot clés : surface à courbure moyenne constante, équation type Simons, équation de Codazzi
Batista da Silva, Márcio Henrique 1
@article{AIF_2011__61_4_1299_0, author = {Batista da Silva, M\'arcio Henrique}, title = {Simons {Type} {Equation} in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and {Applications}}, journal = {Annales de l'Institut Fourier}, pages = {1299--1322}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {4}, year = {2011}, doi = {10.5802/aif.2641}, mrnumber = {2951494}, zbl = {1242.53066}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2641/} }
TY - JOUR AU - Batista da Silva, Márcio Henrique TI - Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications JO - Annales de l'Institut Fourier PY - 2011 SP - 1299 EP - 1322 VL - 61 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2641/ DO - 10.5802/aif.2641 LA - en ID - AIF_2011__61_4_1299_0 ER -
%0 Journal Article %A Batista da Silva, Márcio Henrique %T Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications %J Annales de l'Institut Fourier %D 2011 %P 1299-1322 %V 61 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2641/ %R 10.5802/aif.2641 %G en %F AIF_2011__61_4_1299_0
Batista da Silva, Márcio Henrique. Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications. Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1299-1322. doi : 10.5802/aif.2641. https://aif.centre-mersenne.org/articles/10.5802/aif.2641/
[1] A Hopf differential for constant mean curvature surfaces in and , Acta Math., Volume 193 (2004), pp. 141-174 | DOI | MR | Zbl
[2] Hypersurfaces with constant mean curvature in Spheres, Proc. of the AMS, Volume 120 (1994), pp. 1223-1229 | DOI | MR | Zbl
[3] Simons Equation Revisited, Anais Acad. Brasil. CiĂŞncias, Volume 66 (1994), pp. 397-403 | Zbl
[4] Eigenfunctions and Nodal Sets, Commentarii Math. Helv., Volume 51 (1976), pp. 43-55 | DOI | MR | Zbl
[5] Isometric immersions into 3-dimensional homogeneous manifolds, Commentarii Math. Helv., Volume 82 (2007) no. 1, pp. 87-131 | DOI | MR | Zbl
[6] On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces I, Invent. Math, Volume 98 (1989), pp. 39-58 | DOI | MR | Zbl
[7] Isoperimetric domains in the Riemannian product of a cicle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J., Volume 48 (1999), pp. 1357-1394 | DOI | MR | Zbl
[8] Minimal varieties in Riemannian manifolds, Indiana Univ. Math. J., Volume 88 (1968), pp. 62-105 | MR | Zbl
[9] Totally umbilic surfaces in homogeneous 3-manifolds (To appear in Comment. Math. Helv.) | Zbl
[10] Harmonic functions on complete Riemannian manifolds, Comm.Pure and Appl. Math., Volume 28 (1975), pp. 201-228 | DOI | MR | Zbl
Cited by Sources: