Let be an immersed surface in with constant mean curvature. We consider the traceless Weingarten operator associated to the second fundamental form of the surface, and we introduce a tensor , related to the Abresch-Rosenberg quadratic differential form. We establish equations of Simons type for both and . By using these equations, we characterize some immersions for which or is appropriately bounded.
Soit une surface immergée dans avec une courbure moyenne constante. Nous considérons l’opérateur de Weingarten à trace nulle associé à la seconde forme fondamentale de la surface et nous introduisons un tenseur , liés à la forme quadratique de Abresch-Rosenberg. Nous établissons les équations de type Simons pour et . En utilisant ces équations, nous caractérisons les immersions pour lesquelles ou sont bornés.
Keywords: Surface with constant mean curvature, Simons type equation, Codazzi’s equation
Mots-clés : surface à courbure moyenne constante, équation type Simons, équation de Codazzi
Batista da Silva, Márcio Henrique 1
@article{AIF_2011__61_4_1299_0,
author = {Batista da Silva, M\'arcio Henrique},
title = {Simons {Type} {Equation} in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and {Applications}},
journal = {Annales de l'Institut Fourier},
pages = {1299--1322},
year = {2011},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {61},
number = {4},
doi = {10.5802/aif.2641},
mrnumber = {2951494},
zbl = {1242.53066},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2641/}
}
TY - JOUR
AU - Batista da Silva, Márcio Henrique
TI - Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications
JO - Annales de l'Institut Fourier
PY - 2011
SP - 1299
EP - 1322
VL - 61
IS - 4
PB - Association des Annales de l’institut Fourier
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2641/
DO - 10.5802/aif.2641
LA - en
ID - AIF_2011__61_4_1299_0
ER -
%0 Journal Article
%A Batista da Silva, Márcio Henrique
%T Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications
%J Annales de l'Institut Fourier
%D 2011
%P 1299-1322
%V 61
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2641/
%R 10.5802/aif.2641
%G en
%F AIF_2011__61_4_1299_0
Batista da Silva, Márcio Henrique. Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications. Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1299-1322. doi: 10.5802/aif.2641
[1] A Hopf differential for constant mean curvature surfaces in and , Acta Math., Volume 193 (2004), pp. 141-174 | DOI | Zbl | MR
[2] Hypersurfaces with constant mean curvature in Spheres, Proc. of the AMS, Volume 120 (1994), pp. 1223-1229 | DOI | Zbl | MR
[3] Simons Equation Revisited, Anais Acad. Brasil. CiĂŞncias, Volume 66 (1994), pp. 397-403 | Zbl
[4] Eigenfunctions and Nodal Sets, Commentarii Math. Helv., Volume 51 (1976), pp. 43-55 | DOI | Zbl | MR
[5] Isometric immersions into 3-dimensional homogeneous manifolds, Commentarii Math. Helv., Volume 82 (2007) no. 1, pp. 87-131 | DOI | Zbl | MR
[6] On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces I, Invent. Math, Volume 98 (1989), pp. 39-58 | DOI | Zbl | MR
[7] Isoperimetric domains in the Riemannian product of a cicle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J., Volume 48 (1999), pp. 1357-1394 | DOI | Zbl | MR
[8] Minimal varieties in Riemannian manifolds, Indiana Univ. Math. J., Volume 88 (1968), pp. 62-105 | Zbl | MR
[9] Totally umbilic surfaces in homogeneous 3-manifolds (To appear in Comment. Math. Helv.) | Zbl
[10] Harmonic functions on complete Riemannian manifolds, Comm.Pure and Appl. Math., Volume 28 (1975), pp. 201-228 | DOI | Zbl | MR
Cited by Sources:



