Sur les remplissages holomorphes équivariants  [ On equivariant holomorphic fillings ]
Annales de l'Institut Fourier, Volume 57 (2007) no. 6, p. 2041-2061
We study the fillings of a three-dimensional CR manifold by a complex surface, under an equivariance hypothesis. Namely, we assume that many automorphisms of the CR manifold admit a biholomorphic extension to the whole filling. When the CR manifold is strictly pseudoconvex, we prove a uniqueness result (up to a blow-up).
On étudie les remplissages d’une variété CR de dimension trois par une surface complexe, sous une hypothèse d’équivariance : on suppose que beaucoup d’automorphismes CR du bord se prolongent en des biholomorphismes de tout le remplissage. On démontre dans le cas strictement pseudoconvexe un résultat d’unicité (à éclatement près).
DOI : https://doi.org/10.5802/aif.2323
Classification:  32V30
Keywords: fillings, strictly pseudoconvex CR manifold, complex surfaces, non-compact group action
@article{AIF_2007__57_6_2041_0,
     author = {Kloeckner, Beno\^\i t},
     title = {Sur les remplissages holomorphes \'equivariants},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {57},
     number = {6},
     year = {2007},
     pages = {2041-2061},
     doi = {10.5802/aif.2323},
     zbl = {1132.32014},
     mrnumber = {2377896},
     language = {fr},
     url = {https://aif.centre-mersenne.org/item/AIF_2007__57_6_2041_0}
}
Kloeckner, Benoît. Sur les remplissages holomorphes équivariants. Annales de l'Institut Fourier, Volume 57 (2007) no. 6, pp. 2041-2061. doi : 10.5802/aif.2323. https://aif.centre-mersenne.org/item/AIF_2007__57_6_2041_0/

[1] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van De Ven, Antonius Compact complex surfaces, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 4 (2004) | MR 2030225 | Zbl 1036.14016

[2] D’Angelo, John P. Several complex variables and the geometry of real hypersurfaces, CRC Press, Boca Raton, FL, Studies in Advanced Mathematics (1993) | Zbl 0854.32001

[3] Eliashberg, Yakov Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 151 (1990), pp. 45-67 | MR 1171908 | Zbl 0731.53036

[4] Giraud, Georges Sur certaines fonctions automorphes de deux variables, Ann. Sci. École Norm. Sup. (3), Tome 38 (1921), pp. 43-164 | Numdam | MR 1509233

[5] Goldman, William M. Complex hyperbolic geometry, The Clarendon Press Oxford University Press, New York, Oxford Mathematical Monographs (1999) (, Oxford Science Publications) | MR 1695450 | Zbl 0939.32024

[6] Griffiths, Phillip; Harris, Joseph Principles of algebraic geometry, John Wiley & Sons Inc., New York, Wiley Classics Library (1994) (Reprint of the 1978 original) | MR 1288523 | Zbl 0836.14001

[7] Khenkin, G. M. Several complex variables. III, Springer-Verlag, Berlin, Encyclopaedia of Mathematical Sciences, Tome 9 (1989) (Geometric function theory, A translation of Sovremennye problemy matematiki. Fundamentalnye napravleniya, Tom 9, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986 [ MR0860607 (87m :32011)], Translation by J. Peetre, Translation edited by G. M. Khenkin) | MR 995071 | Zbl 0658.00007

[8] Kulkarni, Ravi S. Conjugacy classes in M(n), Conformal geometry (Bonn, 1985/1986), Vieweg, Braunschweig (Aspects Math., E12) (1988), pp. 41-64 | MR 979788 | Zbl 0659.53014

[9] Mcmullen, Curtis T. Dynamics on K3 surfaces : Salem numbers and Siegel disks, J. Reine Angew. Math., Tome 545 (2002), pp. 201-233 | Article | MR 1896103 | Zbl 1054.37026

[10] Mcmullen, Curtis T. Dynamics on blowups of the projective plane (2006) (prépublication)

[11] Montgomery, Deane; Zippin, Leo Existence of subgroups isomorphic to the real numbers, Ann. of Math. (2), Tome 53 (1951), pp. 298-326 | Article | MR 47668 | Zbl 0045.31202

[12] Schoen, R. On the conformal and CR automorphism groups, Geom. Funct. Anal., Tome 5 (1995) no. 2, pp. 464-481 | Article | MR 1334876 | Zbl 0835.53015

[13] Waterman, P. L. Purely elliptic Möbius groups, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986), Springer, New York (Math. Sci. Res. Inst. Publ.) Tome 11 (1988), pp. 173-178 | MR 955839 | Zbl 0661.57015