[On equivariant holomorphic fillings]
We study the fillings of a three-dimensional CR manifold by a complex surface, under an equivariance hypothesis. Namely, we assume that many automorphisms of the CR manifold admit a biholomorphic extension to the whole filling. When the CR manifold is strictly pseudoconvex, we prove a uniqueness result (up to a blow-up).
On étudie les remplissages d’une variété CR de dimension trois par une surface complexe, sous une hypothèse d’équivariance : on suppose que beaucoup d’automorphismes CR du bord se prolongent en des biholomorphismes de tout le remplissage. On démontre dans le cas strictement pseudoconvexe un résultat d’unicité (à éclatement près).
Mots-clés : remplissages, variétés CR stictement pseudoconvexes, surfaces complexes, action de groupe non compact
Keywords: fillings, strictly pseudoconvex CR manifold, complex surfaces, non-compact group action
Kloeckner, Benoît 1
@article{AIF_2007__57_6_2041_0, author = {Kloeckner, Beno{\^\i}t}, title = {Sur les remplissages holomorphes \'equivariants}, journal = {Annales de l'Institut Fourier}, pages = {2041--2061}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {6}, year = {2007}, doi = {10.5802/aif.2323}, mrnumber = {2377896}, zbl = {1132.32014}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2323/} }
TY - JOUR AU - Kloeckner, Benoît TI - Sur les remplissages holomorphes équivariants JO - Annales de l'Institut Fourier PY - 2007 SP - 2041 EP - 2061 VL - 57 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2323/ DO - 10.5802/aif.2323 LA - fr ID - AIF_2007__57_6_2041_0 ER -
%0 Journal Article %A Kloeckner, Benoît %T Sur les remplissages holomorphes équivariants %J Annales de l'Institut Fourier %D 2007 %P 2041-2061 %V 57 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2323/ %R 10.5802/aif.2323 %G fr %F AIF_2007__57_6_2041_0
Kloeckner, Benoît. Sur les remplissages holomorphes équivariants. Annales de l'Institut Fourier, Volume 57 (2007) no. 6, pp. 2041-2061. doi : 10.5802/aif.2323. https://aif.centre-mersenne.org/articles/10.5802/aif.2323/
[1] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 4, Springer-Verlag, Berlin, 2004 | MR | Zbl
[2] Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993 | Zbl
[3] Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989) (London Math. Soc. Lecture Note Ser.), Volume 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45-67 | MR | Zbl
[4] Sur certaines fonctions automorphes de deux variables, Ann. Sci. École Norm. Sup. (3), Volume 38 (1921), pp. 43-164 | Numdam | MR
[5] Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1999 (, Oxford Science Publications) | MR | Zbl
[6] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc., New York, 1994 (Reprint of the 1978 original) | MR | Zbl
[7] Several complex variables. III, Encyclopaedia of Mathematical Sciences, 9, Springer-Verlag, Berlin, 1989 Geometric function theory, A translation of Sovremennye problemy matematiki. Fundamentalnye napravleniya, Tom 9, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986 [ MR0860607 (87m :32011)], Translation by J. Peetre, Translation edited by G. M. Khenkin | MR | Zbl
[8] Conjugacy classes in , Conformal geometry (Bonn, 1985/1986) (Aspects Math., E12), Vieweg, Braunschweig, 1988, pp. 41-64 | MR | Zbl
[9] Dynamics on surfaces : Salem numbers and Siegel disks, J. Reine Angew. Math., Volume 545 (2002), pp. 201-233 | DOI | MR | Zbl
[10] Dynamics on blowups of the projective plane, 2006 (prépublication)
[11] Existence of subgroups isomorphic to the real numbers, Ann. of Math. (2), Volume 53 (1951), pp. 298-326 | DOI | MR | Zbl
[12] On the conformal and CR automorphism groups, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 464-481 | DOI | MR | Zbl
[13] Purely elliptic Möbius groups, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) (Math. Sci. Res. Inst. Publ.), Volume 11, Springer, New York, 1988, pp. 173-178 | MR | Zbl
Cited by Sources: