We study the fillings of a three-dimensional CR manifold by a complex surface, under an equivariance hypothesis. Namely, we assume that many automorphisms of the CR manifold admit a biholomorphic extension to the whole filling. When the CR manifold is strictly pseudoconvex, we prove a uniqueness result (up to a blow-up).
On étudie les remplissages d’une variété CR de dimension trois par une surface complexe, sous une hypothèse d’équivariance : on suppose que beaucoup d’automorphismes CR du bord se prolongent en des biholomorphismes de tout le remplissage. On démontre dans le cas strictement pseudoconvexe un résultat d’unicité (à éclatement près).
Mot clés : remplissages, variétés CR stictement pseudoconvexes, surfaces complexes, action de groupe non compact
Keywords: fillings, strictly pseudoconvex CR manifold, complex surfaces, non-compact group action
Kloeckner, Benoît 1
@article{AIF_2007__57_6_2041_0, author = {Kloeckner, Beno{\^\i}t}, title = {Sur les remplissages holomorphes \'equivariants}, journal = {Annales de l'Institut Fourier}, pages = {2041--2061}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {6}, year = {2007}, doi = {10.5802/aif.2323}, mrnumber = {2377896}, zbl = {1132.32014}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2323/} }
TY - JOUR AU - Kloeckner, Benoît TI - Sur les remplissages holomorphes équivariants JO - Annales de l'Institut Fourier PY - 2007 SP - 2041 EP - 2061 VL - 57 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2323/ DO - 10.5802/aif.2323 LA - fr ID - AIF_2007__57_6_2041_0 ER -
%0 Journal Article %A Kloeckner, Benoît %T Sur les remplissages holomorphes équivariants %J Annales de l'Institut Fourier %D 2007 %P 2041-2061 %V 57 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2323/ %R 10.5802/aif.2323 %G fr %F AIF_2007__57_6_2041_0
Kloeckner, Benoît. Sur les remplissages holomorphes équivariants. Annales de l'Institut Fourier, Volume 57 (2007) no. 6, pp. 2041-2061. doi : 10.5802/aif.2323. https://aif.centre-mersenne.org/articles/10.5802/aif.2323/
[1] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 4, Springer-Verlag, Berlin, 2004 | MR | Zbl
[2] Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993 | Zbl
[3] Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989) (London Math. Soc. Lecture Note Ser.), Volume 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45-67 | MR | Zbl
[4] Sur certaines fonctions automorphes de deux variables, Ann. Sci. École Norm. Sup. (3), Volume 38 (1921), pp. 43-164 | Numdam | MR
[5] Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1999 (, Oxford Science Publications) | MR | Zbl
[6] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc., New York, 1994 (Reprint of the 1978 original) | MR | Zbl
[7] Several complex variables. III, Encyclopaedia of Mathematical Sciences, 9, Springer-Verlag, Berlin, 1989 Geometric function theory, A translation of Sovremennye problemy matematiki. Fundamentalnye napravleniya, Tom 9, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986 [ MR0860607 (87m :32011)], Translation by J. Peetre, Translation edited by G. M. Khenkin | MR | Zbl
[8] Conjugacy classes in , Conformal geometry (Bonn, 1985/1986) (Aspects Math., E12), Vieweg, Braunschweig, 1988, pp. 41-64 | MR | Zbl
[9] Dynamics on surfaces : Salem numbers and Siegel disks, J. Reine Angew. Math., Volume 545 (2002), pp. 201-233 | DOI | MR | Zbl
[10] Dynamics on blowups of the projective plane, 2006 (prépublication)
[11] Existence of subgroups isomorphic to the real numbers, Ann. of Math. (2), Volume 53 (1951), pp. 298-326 | DOI | MR | Zbl
[12] On the conformal and CR automorphism groups, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 464-481 | DOI | MR | Zbl
[13] Purely elliptic Möbius groups, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) (Math. Sci. Res. Inst. Publ.), Volume 11, Springer, New York, 1988, pp. 173-178 | MR | Zbl
Cited by Sources: