Quasi-isometric vector bundles and bounded factorization of holomorphic matrices
Annales de l'Institut Fourier, Volume 53 (2003) no. 3, p. 885-901
We give a sufficient condition for a hermitian holomorphic vector bundle over the disk to be quasi-isometric to the trivial bundle. One consequence is a version of Cartan's lemma on the factorization of matrices with uniform bounds.
Nous donnons une condition suffisante pour qu'un fibré vectoriel holomorphe hermitien sur le disque soit quasi isométrique au fibré trivial. Une des conséquences est une version du Lemme de Cartan sur la factorisation des matrices holomorphes pour les matrices holomorphes bornées.
DOI : https://doi.org/10.5802/aif.1964
Classification:  46F20,  32A26
Keywords: vector bundle, maximum principle
@article{AIF_2003__53_3_885_0,
     author = {Berndtsson, Bo and Rosay, Jean-Pierre},
     title = {Quasi-isometric vector bundles and bounded factorization of holomorphic matrices},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {53},
     number = {3},
     year = {2003},
     pages = {885-901},
     doi = {10.5802/aif.1964},
     mrnumber = {2008445},
     zbl = {1028.32008},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2003__53_3_885_0}
}
Berndtsson, Bo; Rosay, Jean-Pierre. Quasi-isometric vector bundles and bounded factorization of holomorphic matrices. Annales de l'Institut Fourier, Volume 53 (2003) no. 3, pp. 885-901. doi : 10.5802/aif.1964. https://aif.centre-mersenne.org/item/AIF_2003__53_3_885_0/

[1] L. Alexandersson On vanishing-curvature extensions of Lorentzian metrics, J. Geom. Anal, Tome 4 (1994) no. 4 | MR 1305992 | Zbl 0811.53064

[2] B. Berndtsson ¯ b and Carleson type inequalities, Complex analysis, II (College Park, Md., 1985--86), Springer, Berlin (Lecture Notes in Math) Tome 1276 (1987), pp. 42-54 | Zbl 0627.32014

[3] A. Beurling On two problems concerning linear transformations in Hilbert space, Acta Math, Tome 81 (1948) | MR 27954 | Zbl 0033.37701

[4] A. Brudnyi Matrix-valued Corona theorem for multiply connected domains, Indiana Univ. Math. J, Tome 49 (2000) no. 4 | MR 1836534 | Zbl 1046.46503

[5] G. D. Birkhoff A theorem on matrices of analytic functions, Math. Ann, Tome 74 (1913) | MR 1511753

[6] S. K. Donaldson; P. B. Kronheimer The geometry of four-manifolds, Oxford Science Publications. The Clarendon Press, Oxford Univ, New York, Oxford Mathematical Monographs (1990) | MR 1079726 | Zbl 0820.57002

[7] T. W. Gamelin Wolff's proof of the Corona theorem, Israel J. Math, Tome 37 (1980) no. 1,2, pp. 113-119 | Article | MR 599306 | Zbl 0466.46050

[8] L. Lempert La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, Tome 109 (1981), pp. 427-474 | Numdam | MR 660145 | Zbl 0492.32025

[9] N. Nikolskii Treatise on the shift operator. Spectral function theory, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, Tome 273 (1986) | MR 827223 | Zbl 0587.47036

[10] G. Segal; A. Pressley Loop groups, Oxford Science Publications. The Clarendon Press, Oxford Univer, New York, Oxford Mathematical Monographs (1986) | MR 900587 | Zbl 0618.22011

[11] E. L. Stout The second Cousin problem with bounded data, Pacific J. Math, Tome 26 (1968), pp. 379-387 | MR 235155 | Zbl 0183.35201

[12] E.L. Stout On the multiplicative Cousin problem with bounded data, Ann. Scuola Norm. Sup. Pisa, Tome 27 (1973) no. 3, pp. 1-17 | Numdam | MR 367282 | Zbl 0261.32008

[13] N. Wiener; P. Masani The prediction theory of multivariate stochastic processes I. The regularity condition, Acta Math., Tome 98 (1957) | MR 97856 | Zbl 0080.13002