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QUASI-ISOMETRIC VECTOR BUNDLES
AND BOUNDED FACTORIZATION

OF HOLOMORPHIC MATRICES

by B. BERNDTSSON &#x26; J.-P. ROSAY

1. Introduction.

Let E and F be two holomorphic hermitian vector bundles over a

complex manifold. We say that E and F are quasi-isometric if there is a

holomorphic bundle map
G:F2013~E

and a constant c such that

for all vectors in F. The principal aim of this note is to give a sufficient
condition for a bundle over the disk, A, to be quasi-isometric to the trivial
bundle. We will also apply the theorem (or the method of its proof) to
prove a version of Cartan’s lemma on the factorization of holomorphic
matrices with uniform bounds for the solution. It should be stressed that

our method is strictly one-variable, and that in particular we do not know
if a similar statement on uniform bounds in Cartan’s lemma holds in higher
dimensions.

It is a well-known fact that any holomorphic vector bundle over A is

holomorphically trivial. Therefore there is always some bundle map from

Keyvvords: Vector bundle - Maximum principle.
Math. classification: 46F20 - 32A26.
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the trivial bundle to our bundle E and it can be thought of as giving a
global frame for E. Our theorem then gives a criterion for when we can
find a global frame such that the metric on E is equivalent to the trivial
metric in this frame.

Let a vector in our bundle E be represented by a column vector
~ = (~l , ... , with respect to a certain holomorphic frame. The metric
on E is then given by a positive definite Hermitian matrix A, so that

The curvature, O, of the metric is given, in the same frame, as

If we make a holomorphic change of frame, so that ~ - g77, with g a

holomorphic matrix valued function, the matrix A is transformed to g*Ag,
and the curvature is represented by

Hence the curvature is naturally defined as a linear operator from E to
itself. If E is a line bundle and we write A = e’° we have

In general one verifies that 8 is a Hermitian operator so that

We can now state our main result. Here, and in the sequel, we use the
convention that 

THEOREM 1.1. - Assume there is a bounded subharmonic function

1/J such that

Then E is quasi-isometric to the trivial bundle with a constant c - e211’ljJ II 00 .

Note that when E is a line bundle and A = e~ then (1.1) just means
that with V) bounded. This implies that the Green potential of

G, is bounded. Since 0 = G - log ~ I h 12 with h holomorphic, we can make
a holomorphic change of frame so that A becomes bounded. This proves
the theorem in the line bundle case. In the general case we will replace the
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existence of a Green potential, i. e. the solvability of the Dirichlet problem,
by a non-linear analog, the Wiener-Masani theorem.

In Section 2 we give the proof of Theorem 1.1. In Section 3 we

discuss Cartan’s lemma with uniform bounds. Our result here follows from

Theorem 1.1, but we also give a direct proof. Although the direct proof is
based on the same idea as Theorem 1.1 it avoids all references to bundles

and curvature, so the reader who is principally interested in Cartan’s lemma
may go directly to that proof. In Section 4 we apply Theorem 1.1 to a known
generalization of the Corona theorem: A bounded holomorphic map, f,
from the disk to the space of linear maps from C to C’ can be completed
to a bounded holomorphic map to the space of invertible linear maps from
C’ to itself, provided 6]g) for some positive 6. In Section 5 we
prove a uniform estimate for solutions of the non-linear a-equation

where f is a matrix of (0, I)-forms. In the last section we finally discuss
various proofs of the Wiener-Masani theorem.

2. Proof of Theorem 1.1.

As mentioned in the introduction we may assume that E is already
trivial and that the metric is given by a matrix of smooth functions A. We
may also assume that A is smooth up to the boundary as long as we give
bounds on the change of frame that we look for that depend only on the
sup norm The following theorem, [13], is the basis of our proof.

THEOREM 2.1 (Wiener-Masani). - Let Ao be a positive definite
N x N matrix of smooth functions defined on the circle. Then there is a

N x N matrix, h, of holomorphic functions in the disk, extending smoothly
to the boundary, such that

on the circle, and such that g = h-l is also holomorphic in the disk and also
extends smoothly to the boundary. The matrix h is uniquely determined
up to multiplication from the left by a constant unitary matrix.

In [13] this theorem is given without the statement about regularity
on the boundary (and for a more general class of matrices Ao ) . The theorem
as we have stated it can be found in [8]. See also the main theorem in [1]
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which deals with the more delicate case of metrics of Lorentz signature. In
Section 4 we will discuss several different proofs of Theorem 2.1.

Now choose Ao in the Wiener-Masani theorem to be the boundary
values of our matrix A defining the metric on our bundle E. Choosing g as
in the Theorem 2.1 we get

(I being the identity matrix) on the boundary. We claim that

is uniformly bounded from above and below in the disk. Thus

gives a quasi-isometry from the trivial bundle to E and Theorem 1.1 follows.
We will need the following (well-known) maximum principle for negatively
curved bundles.

LEMMA 2.2. - Let A(z) be smooth and positive definite Hermitian
for z E A. Assume 0. Then

is, for any ~ E C’, subharmonic in the disk. In particular, if

for z E o~0, then the same inequality holds for z E A.

Proof - If h(z) is a smooth CN-valued function, we let

be the holomorphic covariant derivative defined by the metric A. Note that
if h is holomorphic, 

-

Now

and

Hence
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PROPOSITION 2.3. - Let A satisfy

and assume

for z E Then

in A. If

for z E OA, then

in A.

Proof. Consider a metric of the form eØ A. A direct computation
shows that 

~) ,

From this together with our assumption on A it follows that the metric e’l/J A
has riegative curvature, and that the metric e-’l/J A has positive curvature.
The first part of the proposition therefore follows from Lemma 2.2 applied
to e

On the other hand one can verify that if the curvature of a metric A
is positive, then the curvature of is negative. The second part of the

proposition therefore follows from the lemma applied to

Applying Proposition 2.3 to the metric A we get Theorem 1.1.

3. Cartan’s lemma.

Let B be the ball in C" and be a covering of the ball
with two well-separated open sets (by this we mean that the U2’s come
from an open cover of the closed ball). Let g be an invertible N x N matrix
of holomorphic functions defined on Ul n U2. Cartan’s lemma says that we
can then find two invertible matrices of holomorphic functions, g, and 92
defined on Ul and U2 respectively, such that g = glg2 1 on the intersection
of Ul and U2.
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Suppose now that in addition the given matrix of functions g and its
inverse are uniformly bounded. Is it then possible to find gi and 92 with
the same property? The scalar case (when N = 1, i. e. the multiplicative
Cousin problem) has been treated by E.L. Stout ~11~, [12]. Our next result
answers that question affirmatively for any N when n = 1 so that we are
dealing with the disk in C. We will relax the condition that the sets be
well-separated somewhat, and also treat coverings of the disk with more
than two open sets.

To simplify some of the statements in the sequel we will for the
remainder of this section call a bounded real-valued function x in the disk
"good" if there exists some bounded subharmonic function, 0, in the disk
such that

Notice that the class of good functions is closed under sums and products
and also stable under composition with smooth functions on the real line.

THEOREM 3.1. - Let A = be a finite covering of the disk
with open sets. Assume there exists a subordinate partition of unity, (Xi)
consisting of good functions. Let (gij) be a collection of N x N-matrices
of bounded holomorphic functions defined on Vi n Vj satisfying the cocycle
conditions

Then there exist N x N-matrices of bounded holomorphic functions with
bounded inverses, gi, defined on Vi, such that

on Vi n Vj

For the proof we first need a preliminary lemma.

LEMMA 3.2. - Let (Vi) be an open covering of the disk satisfying
the condition in Theorem 2.3. Then there exists a refinement of the

covering, (V’), which also has a subordinate partition of unity of good
functions, and moreover is such that there are good functions Xij with

Proof. 1/3~V}; clearly these sets form a covering
of A. We first define smooth approximations, or, of 
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by

where f N (t) is a nonnegative smooth function in R that vanishes for

t x 1/2N and equals t - 1/2N for t &#x3E; 1/N. Then ai vanishes outside
i and at any point of A at least one ai is greater than 1/2N, and we
obtain our new partition of unity by letting X’ - ai / ~ as.

The functions XiXj vanish outside VinVj and are greater than (3N) -2

on so we can obtain xi~ by composing XiXj with a suitable function
on the line. 0

We can now return to the proof of Theorem 2.3.

Proof. Choose a refinement (Vi’) of the covering as in Lemma 3.2
and consider gij as the transition functions of a holomorphic vector bundle,
E, of rank N over A. We will next define a metric on E that satisfies the
condition of Theorem 1.1.

For this we start with the trivial metrics with respect to the local
trivializations over V~ and then patch them together with the partition of
unity. The resulting metric is given by

in the trivialization over 

By our assumptions on the gij the metric is equivalent to the trivial
metrics defined by the local trivialization over any V/ . The curvature of
the metric, computed in any of the trivializations will be a sum of various
terms. Such a term either contains the Laplacian of a function X’ and no
derivative on any or is of the form bDi D2 where b is bounded and the

DJS are first order derivatives of either a xj or an entry of a gij .
Now put

where lgl stands for the Hilbert-Schmidt norm of the matrix g. Then

for some bounded subharmonic 0’ (since the are "good" ) . Hence
+ 0’) is a bounded subharmonic function in the disk whose Laplacian

dominates on any It follows that the curvature of E is bounded

by the Laplacian of some bounded functions so Theorem 1.1 applies.
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Let G be the quasi-isometry from the trivial bundle to E. Over each

V! G is given by a holomorphic matrix g. Then gi . Since G is

a quasi-isometry and the metric on E is equivalent to the trivial metric
over each trivialization it follows that g. and are uniformly bounded.
Finally, the equations gi = gij gj define extensions of gi to the union of the
v2 and therefore to all of ~. D

The hypothesis of Theorem 3.1 also covers some cases when the sets
Ui are not well-separated. One such case is when the U,’s are bounded by
simple smooth curves that meet at boundary points under positive angles.
We next give an example where the boundary curves meet tangentially and
the conclusion of Theorem 2.3 fails. (A somewhat less precise example can
be found in [11]. )

PROPOSITION 3.3. - Let Q be the disk of radius 1 and center i, and

put U1={z=x+iy E
Let g = e--11’. Then g is a holomorphic function in U1 n U2, bounded from
above and below, which can not be written g = glg2 1 with g2 bounded and
holomorphic in Ui.

Proof. It is clear that 9 is holomorphic and bounded from above
and below on Ul n U2. If g = glg2 I then there is a holomorphic function
in Q, h, such that gi = he-1/z on U1 and g2 = h on U2. In particular h is
bounded on all of Q. On U1, log lhl This contradicts the fact that

the boundary values of log Ihl are integrable. D

We next give a direct proof of Theorem 2.3 which does not rely on
Theorem 1.1. We will treat the case of a covering with two well-separated
open sets, and moreover, for ease of exposition, we will discuss principally
the following special situation - hopefully it will be clear how the argument
can be generalized: Assume that Re z x 0) is compactly included
in Ul and ~z E A ; Re z &#x3E; 0} is compactly included in U2. As before we
may assume that our matrix g extends holomorphically slightly over the
disk. Consider first an arbitrary solution g - y1 y2-1 to the factorization
problem, where the -yi’s also extend slightly over the boundary. We look
for a solution satisfying good estimates of the form gi = qih, where h is
an invertible matrix of holomorphic functions in the disk. By the norm of
a matrix valued function we understand in the sequel the Hilbert Schmidt
norm so that Ig/2 = trace g*g.

Note first that since g = and g is uniformly bounded from
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above and below, the matrices and are comparable as positive
matrices on Ul n U2. We claim that by the Wiener-Masani theorem we
can choose h in such a way that are uniformly bounded from above
and below on Ui intersected with the boundary of the disk. To achieve
this we first choose h so that gi gl = is the identity matrix on
the complement of U2 and so that = is the identity on the
complement of Ul . This means that (h-’)*h-1 = on the respective
pieces of the boundary. On the intersection of Ul, U2 and the boundary we
take (h-1 ) * h-1 equal to a suitable convex combination the Since

qgqi and are comparable as positive matrices on U1 n U2 it follows

that gi gi are uniformly bounded from above and below on the boundary
of the disk intersected Now let c be a large constant and consider the
function

on Ul nU2. Since by the argument above the matrices are comparable as

positive matrices on Ul n U2 it follows that for c big enough (only depending
on the supremum norms of g, g-1 and the covering) v = 19l12e-cx near the
boundary of U2 and vice versa. Hence we can extend the definition of v to
all of the disk by putting it equal to on the complement of U2 and

to on the complement of Ul. The function v is then continuous,
subharmonic, and uniformly bounded on the boundary. By the maximum
principle v is bounded everywhere in the disk, so the norms of g, and 92
are bounded. The same argument applies to the inverses of the 9z, so our
second proof of Theorem 2.3 is complete.

Finally, we can not resist giving one last proof of Cartan’s lemma
with bounds. This proof, which is based on the reflection principle seems
to work only in the case of a well-separated covering, and does not give
explicit bounds easily. On the other hand, it is very short.

Consider a covering of the disk by the sets ~Re z &#x3E; -6 and ~Re z  8}.
Let ,S’ be the part of the boundary of the disk where -6  Re z  6. Choose

a matrix-valued function, Ao, on the boundary of the disk which equals g*g
on ,S’ and is bounded and positively definite everywhere. Write Ao = h* h
where h is a bounded holomorphic matrix with bounded inverse. (This
choice of Ao is not smooth, but there is a version of the Wiener-Masani
theorem that applies.) It is now enough to factor 7 = gh-1. Since q*q is
the identity matrix on S’ it follows from the Schwarz reflection principle
that -y extends holomorphically across S. By the classical Cartan’s lemma

~y factors as in a slightly larger disk, and the restriction of the
to our original disk will surely be bounded with bounded inverse.
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4. Tolokonnikovs lemma.

Our next application is to the following (known) generalization of the
Corona theorem (due to Tolokonnikov, see e.g. [9] for a proof, and [4] for
generalizations) .

THEOREM 4.1. -

N-tuples of bounded holomorphic functions in the disk, and assume that
Then there are further N-tuples of

bounded holomorphic functions fj, j == M + l, ...N, such that the matrix
- 1 -1 1 _0 - 1BT,

is invertible with bounded inverse.

Proof. Let first M = 1 and write f 1 = f. By the Corona theorem
there are bounded holomorphic functions gj such that

Let y be the map from the trivial bundle of rank N to the trivial line
bundle defined by

Let E be the kernel and give E the metric as a subbundle of the
trivial bundle. We claim that E satisfies the hypothesis of Theorem 1.1.
To see this, cover the disk by the open sets Uj where 19j 12 &#x3E; E. We must

estimate the curvature of E on each of these sets and to be specific we
choose Ul. On Ul we can choose (Ck) where (g~, 0 - - - - gl, 0 - - -) as
a local holomorphic frame. With respect to this frame the metric is given
by ( (e~ , ek ) ) == The curvature of this matrix is a sum with

bounded coefficients of products of two first order derivatives of the gj. The

hypothesis of Theorem 1.1 is therefore satisfied with 0 = 

By Theorem 1.1, E is quasi-isometric to the trivial bundle of rank
N - 1. Let f 2, ... , f N be the sections of E that are images of the standard
basis of the trivial bundle of rank N - 1. Then the sections f, f 2, ... , f N
are uniformly linearly independent, which means that F is invertible with
bounded inverse.

The case of M &#x3E; 1 is proved by induction, so assume we have

already treated the case of fewer N-tuples. By the first part of the proof
we can find bounded holomorphic N-tuples p 2 ...pN such that the matrix
G = (fl, p2, ...pN) is bounded with bounded inverse. Then
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is an N x M matrix whose first column, f 1, equals (1, 0...0) t . Then the
(N - I)-tuples (k 2, ...l~M), where k3 is f3 with the first entry removed,
satisfy the hypothesis of the theorem. By the induction hypothesis they can
be completed with an (N-1) x (N - M - 1) matrix H, so that (k 2 ...I~M, H)
is holomorphic and bounded with bounded inverse. Let Ho be H augmented
with a top-row consisting of zeros. Then F = ... f M, Ho) is the matrix
we seek. D

5. A non-linear 9-equation.

Let f be an N x N-matrix of (0, l)-forms in the disk. We will study
the equation

and in particular look for solutions u such that both u and u - 1 are

uniformly bounded in the disk. In the scalar case, i.e., when N - 1 it

is not hard to see that such a solution exists if and only if the equation

has a bounded solution. Our result in the higher dimensional case is the
following .

THEOREM 5.1. - Suppose there is a bounded subharmonic func-
tion, 0 in the disk such that

Then the equation (5.1) has a solution such that both u and its inverse are
uniformly bounded.

Theorem 5.1 is formally quite similar to the theorem of T. Wolff,
stating that the scalar 8-(equation has a bounded solution if

for some bounded 4&#x3E;. Wolff’s theorem was devised to give a simple proof
of the Corona theorem, see [7] for this and [2] for the formulation of the
theorem that we have given here.

Notice however that in the scalar case (or more generally the case
when our matrix f in (5.1) is diagonal) the matrices f and f * anticommute
under the wedge product so the condition (5.2) is actually a condition only
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on Of. Theorem 5.1 nevertheless seems quite related to the circle of ideas
around Wolff’s theorem as the following example shows.

Let f be a 2 x 2 matrix with all entries equal to 0 except the entry
in the upper right corner where the entry is F. The inequality (5.2) is then
equivalent to the hypothesis in Wolff’s theorem. Suppose this condition is
satisfied and let u be a solution to (5.1) bounded from above and below.
Let (a, b) be the first row of u, and let (c, d) be the second row. Then (5.1)
is equivalent to saying that c and d are holomorphic and that 8a = cF and
ab = dF. Since u is uniformly bounded from below and above it follows that
lei 6 &#x3E; 0 in the disk. By the Corona theorem, there exist bounded
holomorphic functions h and k such that = 1. Then 8(ha + kb) = F
and we find a bounded solution to the scalar (and linear) a-problem.

Admittedly this is not too impressive as the proof uses the Corona
theorem - the main application of Wolff’s result! Maybe there is some other
way of obtaining all of Wolff’s theorem from Theorem 5.1, but it seems

more likely that Theorem 5.1 is really simpler. Our discussion then shows
that modulo this simpler fact, Wolff’s theorem and the Corona theorem
are "equivalent".

We now turn to the proof of Theorem 5.1.

Proof. There always exists some solution, u, to (5.2) if we leave

aside the question of estimates. That this is possible locally means that any
complex structure on a vector bundle over a Riemann surface is integrable
and is discussed e.g. in [6]. If u and v are two local solutions it is easily
verified that u = vh, where h is an invertible holomorphic matrix. A
collection of local solutions to (5.2) on an open cover of the disk therefore
defines a collection of holomorphic transition function on the overlaps which
in turn defines a holomorphic vector bundle over the disk. Since this bundle
is trivial we can piece together our local solutions to a global one.

We look for a solution v = uh where h is an invertible matrix of

holomorphic functions in the disk, and is chosen so that v satisfies the

conditions of the theorem. To say that v is bounded from above and below

is equivalent to saying that v*v = h* u* uh is bounded from above and

below. If we let A = u*u and consider A as an Hermitian metric on the

trivial vector bundle over A, finding h amounts to finding a holomorphic
frame with respect to which the metric is equivalent to the trivial metric.

This is precisely the question discussed in Theorem 1.1, and we know
that it is possible if the curvature of the metric A satisfies condition (1.1).
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We claim that ( 1.1 ) is actually equivalent to (5.2), which then completes
the proof. There are two ways of verifying the claim, and in both cases we
leave the details to the reader. The first way is by brute calculation, using
the definition of the curvature of A in the introduction.

The second, more conceptual way, is to think of

as a unitary connection on the trivial bundle (which is then compatible
with its trivial metric). A solution of (5.1) gives us a change of frame such
that D becomes holomorphic (i.e., has vanishing (0, 1)-part) in this frame.
In the new holomorphic frame the metric is given by the matrix A = u*u
and D is the unique holomorphic connection compatible with that metric.
The curvature of the connection D, D2 = dO + 0 A 0, is therefore equal
to the curvature of the metric A and this means precisely that conditions

(5.2) and (1.1) are equivalent.
m

6. The Wiener-Masani theorem.

The Wiener-Masani theorem was stated and proved in [13] in the con-
text of stationary time series. There the authors only assume integrability
of the logarithm of the determinant of Ao and no regularity questions are
discussed. It is instead proven that the logarithm of the modulus of the
determinant of h is also integrable. For the proof of Theorem 1.1 we cer-

tainly do need at least continuity up to the boundary of the matrices h
and h-1. The theorem as we have stated it can be found in e.g. [8] (ap-
pendix) together with a neat proof based on linearization for data close
to the identity matrix, and a reduction to this case by means of rational
approximation. We shall now take the opportunity to discuss a few other

proofs of the Wiener-Masani theorem which show its connection to several
different areas of mathematics.

The first possibility is to reduce the Wiener-Masani theorem to the
Birkhoff factorization theorem [5], [10]. This theorem says that any smooth
invertible matrix valued function M on the circle can be smoothly factored

where g+, g+ 1 and g_ , g=1 extend holomorphically to the disk, and D is a
diagonal matrix with entries zk3. We claim that if M is positive definite D
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must be the unit matrix. To see this, note first that the winding number
of the determinant of M, which is zero, equals that of D, so if all the

"partial indices" kj are not zero at least one of them is negative. We can
then find a holomorphic vector f, vanishing at the origin such that Dg+ f
is constant. Then M f extends antiholomorphically to the disk, so f *M f
also extends antiholomorphically and moreover vanishes at the origin,
contradicting the fact that it is strictly positive on the boundary. Next,
note that as M = M*, g-lg+ = = c extends both holomorphically
and antiholomorphically, so it is a constant. One checks that c &#x3E; 0, and

puts ~- = g- c 1/2 ~+ = c-l/2g+. Then M = q- q+ and ~- == ~+ so we are
done.

Alternatively we can view the Wiener-Masani theorem as a boundary
problem for a nonlinear elliptic PDE. A positive definite matrix A can
be factored A = h* h if and only if the curvature OA vanishes, and the
factor h will then have the same regularity as A if we measure regularity
in terms of Holder classes with non-integer exponents. By linearization one
can solve the equation OA = 0, with A = Ao on 8A if Ao is sufficiently close
to the identity. This also means that the set of boundary data for which
the problem is solvable is open, since any solvable boundary data can be
transformed to the identity by the map Ao - g*Aog. An appropriate a
priori estimate then shows that the boundary value problem is solvable for
any positive definite boundary data. See also [1] where the more difficult
question of Hermitian boundary values with Lorentz signature is discussed.

Finally, we give a proof of the Wiener-Masani theorem on the lines of
the proof of Tolokonnikov’s lemma in [9] (which in turn follows the ideas
in Beurling’s description of invariant subspaces, [3]).

Let H2 be the Hardy space of the disk and consider F = (H2 ) N - the
product of N copies of H2. We have two natural scalar products on F. The
first one, (. , . ), is the one inherited from the standard product on H2. The
second one, to be denoted (.,.) is defined by the matrix valued function
Ao on the circle: If h = ( h 1, ... , hN) is an element in F

By the hypothesis on Ao the two induced norms are equivalent.

Consider now the space Fo of functions in F that vanish at the origin.
Clearly Fo has codimension N in F. Let G be the orthogonal complement
of Fo with respect to the scalar product (’,’). Let gi, where i ranges from
1 to N be an orthonormal basis for G. The g2’s are vector-valued functions
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and we think of them as column vectors. Let g be the matrix (g1, ... , gN ) .
We then have:

PROPOSITION 6.1. - The matrix g is an invertible matrix of holo-

morphic functions in the disk that is bounded and has a bounded inverse.

g is smooth up to the boundary (if Ao is smooth) and

is the identity matrix on the boundary.

Proof. By the construction, gi is orthogonal to gk if k is different
from i, and orthogonal to for any k if m &#x3E; 0. Moreover g, has norm
1. This implies that = almost everywhere on the circle. In other
words

almost everywhere on the circle. Since Ao is bounded from above and below
and the gi lie in H2 this implies in particular that all the components of g
lie in H° . We claim that g is invertible with bounded inverse.

To see this, let I h I I Ao denote the norm of an element of F with respect
to the metric defined by Ao and let Ilhll ( be the standard norm. Note that
if h is in F, ( which shows in particular that the map
T : h ~ gh from F to itself is injective with closed range. To prove that
it is also surjective it suffices to prove that its range is dense. Suppose h
is a non-zero element of F that is orthogonal to the range of T. Write
h = zho, where k ) 0 and 0. Then, if -y E G (recall G is the
orthogonal complement to Fo under the Ao-scalar product) belongs to
the range, so

,_ .. .._ . _ -

Hence ho lies in Fo, so ho (o) - 0 contrary to assumption. In conclusion
T is a one-to-one map from F to itself. Therefore there is a matrix of H2

functions, H such that gH = I. Since g-1 lies in L°° on the boundary it
follows that H = g-1 has entries in H°° .

It only remains to prove that g is smooth up to the boundary. For
this, note that Aog = g-1* a. e on the boundary. The smoothness therefore
follows from the next lemma, which is a particular case of a well-known
reflection principle for smooth functions.
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LEMMA 6.2. - Suppose (hl, ... , hN) is a vector of functions in H2
and that (~1,... aN ) is a vector of smooth functions. Suppose moreover

f where f is in Then f is smooth.

Proof. Consider a Fourier coefficient c( j ) with negative index of a
product ah where a is smooth and h belongs to H2. Since h has vanishing
Fourier coefficients with negative index and the coefficients of a, say a(k),
decay faster than polynomially we get

for any d &#x3E; 0. It follows that the Fourier coefficients with negative indices
of f decay faster than any polynomial. Since f has vanishing Fourier
coefficients with positive indices, f is smooth. D
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