Filtration de Harder-Narasimhan pour des fibrés complexes ou des faisceaux sans torsion
Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 541-564.

On généralise dans cet article la notion de filtration de Harder-Narasimhan au cas des fibrés complexes sur une variété presque complexe compacte d’une part, et au cas des faisceaux cohérents sans torsion sur une variété holomorphe d’autre part. On démontre, dans les deux cas, l’existence d’un déstabilisant maximal. On obtient un théorème de convergence en famille et par là-même l’ouverture de la stabilité en déformation.

We generalize here the Harder-Narasimhan filtration, on the one hand to the case of complex vector bundles over almost complex manifolds and on the other hand to torsion free sheaves. We also prove the openness of stability in deformation in this very general context.

DOI : https://doi.org/10.5802/aif.1952
Classification : 53C07,  32Q60,  32L10
Mots clés: filtration de Harder-Narasimhan, stabilité, structure presque complexe, faisceaux, déformation
@article{AIF_2003__53_2_541_0,
     author = {Bruasse, Laurent},
     title = {Filtration de Harder-Narasimhan pour des fibr\'es complexes ou des faisceaux sans torsion},
     journal = {Annales de l'Institut Fourier},
     pages = {541--564},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {53},
     number = {2},
     year = {2003},
     doi = {10.5802/aif.1952},
     mrnumber = {1990006},
     zbl = {01940704},
     language = {fr},
     url = {aif.centre-mersenne.org/item/AIF_2003__53_2_541_0/}
}
Bruasse, Laurent. Filtration de Harder-Narasimhan pour des fibrés complexes ou des faisceaux sans torsion. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 541-564. doi : 10.5802/aif.1952. https://aif.centre-mersenne.org/item/AIF_2003__53_2_541_0/

[1] S. Bando; Y-T. Siu; T. Ochiai, T. Mabuchi, J. Noguchi editors Stable sheaves and Einstein-Hermitian metrics, Geometry and analysis on complex manifolds (1994) | Zbl 0880.32004

[2] L. Bruasse Harder-Narasimhan filtration on non kähler manifolds, Int. Journal of Maths, Tome 12 (2001) no. 5, pp. 579-594 | Article | MR 1843867 | Zbl 01911891

[3] L. Bruasse Stabilité et filtratrion de Harder-Narasimhan (décembre 2001) (Ph.D. Thesis, LATP (UM 6632) CMI)

[4] P. De Bartolomeis; G. Tian Stability of complex vector bundles, J. Differential Geometry, Tome 43 (March 1996) no. 2, pp. 231-274 | MR 1424426 | Zbl 0853.32033

[5] P. Gauduchon Sur la 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., Tome vol. 267 (1984), pp. 495-518 | Article | MR 742896 | Zbl 0523.53059

[6] G. Harder; M. Narasimhan On the Cohomology Groups of Moduli Spaces, Math. Ann, Tome 212 (1975), pp. 215-248 | Article | MR 364254 | Zbl 0324.14006

[7] S. Kobayashi Differential geometry of complex vector bundles, Princeton University Press, 1987 | MR 909698 | Zbl 0708.53002

[8] M. Lübke; A. Teleman The Kobayashi-Hitchin correspondence, World Scientific, 1995 | MR 1370660 | Zbl 0849.32020

[9] M. Maruyama The theorem of Grauert-Mülich-Spindler, Math. Ann, Tome 225 (1981), pp. 317-333 | Article | MR 615853 | Zbl 0438.14015

[10] S. Shatz The decomposition and specialization of algebraic families of vector bundles, Composito. Math, Tome 35 (1977), pp. 163-187 | Numdam | MR 498573 | Zbl 0371.14010

[11] K. Uhlenbeck; S. T. Yau On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Communications on Pure and Applied Mathematics, Tome 39 (1986), pp. 257-293 | Article | MR 861491 | Zbl 0615.58045

[12] K. Uhlenbeck; S. T. Yau A note on our previous paper : On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Communications on Pure and Applied Mathematics, Tome 42 (1989), pp. 703-707 | Article | MR 997570 | Zbl 0678.58041