Minimalité des courbes sous-canoniques
Annales de l'Institut Fourier, Tome 52 (2002) no. 4, pp. 1027-1040.

Soient un fibré de rang 2 sur l’espace projectif de dimension 3 sur un corps algébriquement clos et n un entier tel que H 0 (n-1)=0 et H 0 (n)0. Toute courbe C schéma des zéros d’une section non nulle de (n) est une courbe minimale dans sa classe de biliaison.

We prove the following result: let be a rank 2 bundle on the projective space 3 of dimension 3, and n an integer such that H 0 (n-1)=0 and H 0 (n)0. Let C be a curve which is the zero locus of a section of (n). Then C is minimal in its biliaison class.

DOI : https://doi.org/10.5802/aif.1909
Classification : 14H50,  14F05
Mots clés: fibré, biliaison, courbe minimale, courbe sous-canonique
@article{AIF_2002__52_4_1027_0,
     author = {Martin-Deschamps, Mireille},
     title = {Minimalit\'e des courbes sous-canoniques},
     journal = {Annales de l'Institut Fourier},
     pages = {1027--1040},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {52},
     number = {4},
     year = {2002},
     doi = {10.5802/aif.1909},
     mrnumber = {1926671},
     zbl = {1002.14009},
     language = {fr},
     url = {aif.centre-mersenne.org/item/AIF_2002__52_4_1027_0/}
}
Martin-Deschamps, Mireille. Minimalité des courbes sous-canoniques. Annales de l'Institut Fourier, Tome 52 (2002) no. 4, pp. 1027-1040. doi : 10.5802/aif.1909. https://aif.centre-mersenne.org/item/AIF_2002__52_4_1027_0/

[B] A. Buraggina Biliaison classes of reflexive sheaves, Math. Nachr, Tome 201 (1999), pp. 53-76 | Article | MR 1680849 | Zbl 0949.14009

[BBM] E. Ballico; G. Bolondi; J. Migliore The Lazarsfeld-Rao problem for liaison classes of two-codimensional subschemes of $ {\Bbb P}^n$, Amer. J. Math, Tome 113 (1991), pp. 117-128 | Article | MR 1087803 | Zbl 0754.14032

[H1] R. Hartshorne Stable Vector Bundles of rank 2 on $\Bbb P^3$, Math. Ann., Tome 238 (1978), pp. 229-280 | Article | MR 514430 | Zbl 0411.14002

[H2] R. Hartshorne Generalized Divisors on Gorenstein Schemes, K-Theory, Tome 8 (1994), pp. 287-339 | Article | MR 1291023 | Zbl 0826.14005

[HMDP] R. Hartshorne; M. Martin-Deschamps; D. Perrin Un théorème de Rao pour les familles de courbes gauches, Journal of Pure and Applied Algebra Algebra, Tome 155 (2001), pp. 53-76 | Article | MR 1804328 | Zbl 1063.14057

[Ho] G. Horrocks Vector bundles on the punctured spectrum of a local ring, Proc. Lond. Math. Soc, Tome 14 (1964), pp. 689-713 | Article | MR 169877 | Zbl 0126.16801

[M] J. Migliore Geometric Invariants of Liaison, J. Algebra, Tome 99 (1986), pp. 548-572 | Article | MR 837562 | Zbl 0596.14020

[MD] M. Martin-Deschamps From coherent sheaves to curves in $\Bbb P^3$ (A paraître dans Le Matematiche (Catania), volume en l'honneur de Silvio Greco) | MR 1984201 | Zbl 02217230

[MDP1] M. Martin-Deschamps; D. Perrin Sur la classification des courbes gauches, Astérisque, Tome Vol (1990), p. 184-185 | MR 1073438 | Zbl 0717.14017

[MDP2] M. Martin-Deschamps; D. Perrin Quand un morphisme de fibrés dégénère-t-il le long d'une courbe lisse ?, Lecture Notes in Pure and Applied Mathematics Series, Tome 200, Marcel Dekker, Inc., 1998, July | MR 1651093

[R] A.P. Rao Liaison among curves in $\Bbb P^3$, Invent. Math., Tome Vol. 50 (1979), pp. 205-217 | MR 520926 | Zbl 0406.14033